A349281 a(n) is the number of prime powers (not including 1) that are (1+e)-divisors of n.
0, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 3, 2, 2, 2, 3, 1, 3, 1, 2, 2, 2, 2, 4, 1, 2, 2, 3, 1, 3, 1, 3, 3, 2, 1, 4, 2, 3, 2, 3, 1, 3, 2, 3, 2, 2, 1, 4, 1, 2, 3, 4, 2, 3, 1, 3, 2, 3, 1, 4, 1, 2, 3, 3, 2, 3, 1, 4, 3, 2, 1, 4, 2, 2, 2, 3, 1, 4, 2, 3, 2, 2, 2, 3, 1, 3, 3, 4, 1, 3, 1, 3, 3
Offset: 1
Examples
8 has 3 (1+e)-divisors, 1, 2 and 8. Two of these divisors, 2 and 8 = 2^3 are prime powers. Therefore, a(8) = 2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_,e_] := DivisorSigma[0, e]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a,100]
-
PARI
A349281(n) = vecsum(apply(e->numdiv(e),factor(n)[,2])); \\ Antti Karttunen, Nov 13 2021
Formula
Additive with a(p^e) = A000005(e).
Sum_{k=1..n} a(n) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = Sum_{p prime} f(1/p) = 0.51780076119050171903..., where f(x) = -x + (1-x) * Sum_{k>=1} x^k/(1-x^k). - Amiram Eldar, Sep 29 2023
Comments