A349295 a(n) is the number of ordered 6-tuples (a_1,a_2,a_3,a_4,a_5,a_6) having all terms in {1,...,n} such that there exists a tetrahedron ABCD with those edge-lengths, taken in a particular order (see comments).
0, 1, 15, 124, 603, 2173, 6204, 15201, 33149, 66002, 122410, 214186, 357189, 572385, 886117, 1330930, 1947746, 2787431, 3907866, 5380602, 7288597, 9729060, 12815704, 16677303, 21461500, 27340308, 34501149, 43160975, 53560487, 65967718, 80677972, 98029728
Offset: 0
Keywords
Examples
For n=2 the 6-tuples are (1,1,1,1,1,1), (1,1,1,2,2,2), (1,2,2,2,1,1), (2,1,2,1,2,1), (2,2,1,1,1,2), (2,2,1,2,2,1), (2,1,2,2,1,2), (1,2,2,1,2,2), (1,2,2,2,2,2), (2,1,2,2,2,2), (2,2,1,2,2,2), (2,2,2,1,2,2), (2,2,2,2,1,2), (2,2,2,2,2,1), (2,2,2,2,2,2) corresponding to A097125(1) + A097125(2) = 5 different tetrahedra.
Links
- Giovanni Corbelli, Table of n, a(n) for n = 0..254
- Giovanni Corbelli, FreeBasic program
- Karl Wirth and André S. Dreiding, Edge lengths determining tetrahedrons, Elemente der Mathematik, Volume 64, Issue 4, 2009, pp. 160-170.
Comments