A349325 Number of times the Collatz plot started at n crosses the y = n line, or -1 if the number of crossings is infinite.
1, 1, 2, 1, 2, 3, 4, 1, 4, 1, 2, 1, 2, 5, 2, 1, 4, 5, 6, 1, 2, 3, 2, 1, 6, 1, 4, 1, 2, 3, 4, 1, 6, 1, 2, 1, 2, 3, 4, 1, 6, 1, 4, 1, 2, 3, 4, 1, 4, 1, 2, 1, 2, 7, 6, 1, 6, 1, 2, 3, 4, 7, 6, 1, 4, 1, 2, 1, 2, 3, 6, 1, 10, 1, 2, 1, 2, 5, 2, 1, 4, 5, 6, 1, 2, 3, 2
Offset: 1
Keywords
Examples
The trajectory starting at 7 is 7 -> 11 -> 17 -> 26 -> 13 -> 20 -> 10 -> 5 -> 8 -> 4 -> 2 -> 1, so the Collatz plot crosses the y = 7 line at the beginning, from 10 to 5, from 5 to 8 and from 8 to 4, for a total of 4 times. a(7) is therefore 4.
References
- J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, American Mathematical Society, 2010.
Links
- J. C. Lagarias, The 3x+1 Problem: An Overview, arXiv:2111.02635 [math.NT], 2021.
- Index entries for sequences related to 3x+1 (or Collatz) problem
Programs
-
Mathematica
nterms=100;Table[h=1;prevc=c=n;While[c>1,If[OddQ[c],c=(3c+1)/2;If[prevc
n,h++],c/=2^IntegerExponent[c,2];If[prevc>n&&c -
PARI
f(n) = if (n%2, (3*n+1)/2, n/2); \\ A014682 a(n) = {my(nb=1, prec=n, next); while (prec != 1, next = f(prec); if ((next-n)*(prec-n) <0, nb++); prec = next;); nb;} \\ Michel Marcus, Nov 16 2021
-
Python
def A349325(n): prevc = c = n h = 1 while c > 1: if c % 2: c = (3*c+1) // 2 if prevc < n and c > n: h += 1 else: c //= 2 if prevc > n and c < n: h += 1 prevc = c return h print([A349325(n) for n in range(1, 100)])
Formula
a(2^k) = 1, for integers k >= 0.
a(A166245(m)) = 1 for m>=1. - Michel Marcus, Nov 16 2021
Comments