A349340 Dirichlet inverse of A003557, where A003557 is multiplicative with a(p^e) = p^(e-1).
1, -1, -1, -1, -1, 1, -1, -1, -2, 1, -1, 1, -1, 1, 1, -1, -1, 2, -1, 1, 1, 1, -1, 1, -4, 1, -4, 1, -1, -1, -1, -1, 1, 1, 1, 2, -1, 1, 1, 1, -1, -1, -1, 1, 2, 1, -1, 1, -6, 4, 1, 1, -1, 4, 1, 1, 1, 1, -1, -1, -1, 1, 2, -1, 1, -1, -1, 1, 1, -1, -1, 2, -1, 1, 4, 1, 1, -1, -1, 1, -8, 1, -1, -1, 1, 1, 1, 1, -1, -2, 1
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Programs
-
Mathematica
f[p_, e_] := -(p - 1)^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 18 2021 *)
-
PARI
A003557(n) = (n/factorback(factorint(n)[, 1])); memoA349340 = Map(); A349340(n) = if(1==n,1,my(v); if(mapisdefined(memoA349340,n,&v), v, v = -sumdiv(n,d,if(d
A003557(n/d)*A349340(d),0)); mapput(memoA349340,n,v); (v))); -
PARI
A349340(n) = { my(f=factor(n)); prod(i=1, #f~, -((f[i,1]-1)^(f[i,2]-1))); };