cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349350 Dirichlet inverse of A057521, the powerful part of n.

Original entry on oeis.org

1, -1, -1, -3, -1, 1, -1, -1, -8, 1, -1, 3, -1, 1, 1, 5, -1, 8, -1, 3, 1, 1, -1, 1, -24, 1, -10, 3, -1, -1, -1, 7, 1, 1, 1, 24, -1, 1, 1, 1, -1, -1, -1, 3, 8, 1, -1, -5, -48, 24, 1, 3, -1, 10, 1, 1, 1, 1, -1, -3, -1, 1, 8, -3, 1, -1, -1, 3, 1, -1, -1, 8, -1, 1, 24, 3, 1, -1, -1, -5, 28, 1, -1, -3, 1, 1, 1, 1, -1, -8
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2021

Keywords

Comments

Multiplicative because A057521 is.

Crossrefs

Cf. A057521.
Cf. also A349340, A349442.

Programs

  • Mathematica
    f[p_, e_] := Module[{B = 1 + p - 2*p^2, C = Sqrt[1 + 2*p - 3*p^2]}, FullSimplify[((B - C)*(p - 1 + C)^(e - 1) - (B + C)*(p - 1 - C)^(e - 1))/(2^e*C)]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 24 2023 *)
  • PARI
    A057521(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)); }; \\ From A057521
    memoA349350 = Map();
    A349350(n) = if(1==n,1,my(v); if(mapisdefined(memoA349350,n,&v), v, v = -sumdiv(n,d,if(dA057521(n/d)*A349350(d),0)); mapput(memoA349350,n,v); (v)));

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A057521(n/d) * a(d).
Let p be a prime, B = 1 + p - 2*p^2 and C = sqrt(1 + 2*p - 3*p^2). Then the sequence is multiplicative with a(p^e) = ((B-C)*(p-1+C)^(e-1) - (B+C)*(p-1-C)^(e-1))/(2^e*C). - Sebastian Karlsson, Dec 02 2021