A349359 Sum of A064216 and its Dirichlet inverse, where A064216 = A064989(2n-1), and A064989 is fully multiplicative with a(2) = 1 and a(p) = prevprime(p) for odd primes p.
2, 0, 0, 4, 0, 12, 0, 12, 9, 16, 0, 22, 0, 44, 24, 5, 0, 40, 0, 60, 66, 40, 0, 14, 16, 36, 51, 10, 0, 106, 0, 82, 60, 56, 88, 26, 0, 124, 54, -10, 0, -46, 0, 144, 134, 48, 0, 235, 121, 140, 84, 86, 0, 19, 80, -108, 186, 136, 0, -44, 0, 236, 211, 29, 72, 158, 0, 216, 72, 62, 0, 152, 0, 284, 190, 10, 220, 98, 0, 260, 181
Offset: 1
Keywords
Links
Programs
-
PARI
A064989(n) = { my(f = factor(n)); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); }; A064216(n) = A064989((2*n)-1); memoA349358 = Map(); A349358(n) = if(1==n,1,my(v); if(mapisdefined(memoA349358,n,&v), v, v = -sumdiv(n,d,if(d
A064216(n/d)*A349358(d),0)); mapput(memoA349358,n,v); (v))); A349359(n) = (A064216(n)+A349358(n));
Comments