cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349375 Dirichlet convolution of Kimberling's paraphrases (A003602) with Liouville's lambda.

Original entry on oeis.org

1, 0, 1, 1, 2, 0, 3, 0, 4, 0, 5, 1, 6, 0, 4, 1, 8, 0, 9, 2, 6, 0, 11, 0, 11, 0, 10, 3, 14, 0, 15, 0, 10, 0, 12, 4, 18, 0, 12, 0, 20, 0, 21, 5, 14, 0, 23, 1, 22, 0, 16, 6, 26, 0, 20, 0, 18, 0, 29, 4, 30, 0, 21, 1, 24, 0, 33, 8, 22, 0, 35, 0, 36, 0, 21, 9, 30, 0, 39, 2, 31, 0, 41, 6, 32, 0, 28, 0, 44, 0, 36, 11, 30, 0, 36
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2021

Keywords

Crossrefs

Cf. A347954, A347955, A347956, A349136, A349370, A349371, A349372, A349373, A349374, A349390, A349431, A349444, A349447 for Dirichlet convolutions of other sequences with A003602.
Cf. also A349395.

Programs

  • Mathematica
    k[n_] := (n / 2^IntegerExponent[n, 2] + 1)/2; a[n_] := DivisorSum[n, k[#] * LiouvilleLambda[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 16 2021 *)
  • PARI
    A003602(n) = (1+(n>>valuation(n,2)))/2;
    A008836(n) = ((-1)^bigomega(n));
    A349375(n) = sumdiv(n,d,A003602(n/d)*A008836(d));

Formula

a(n) = Sum_{d|n} A003602(n/d) * A008836(d).