A349377 Dirichlet convolution of A006369 with the Dirichlet inverse of A006368, where A006368 is the "amusical permutation", and A006369 is its inverse permutation.
1, 0, 0, -1, 3, -5, 4, 2, -1, -11, 7, 7, 7, -14, -7, -3, 10, -2, 11, 16, -10, -25, 14, -6, 2, -25, 0, 18, 17, 11, 18, 4, -17, -36, -10, 20, 21, -39, -17, -18, 24, 12, 25, 34, -7, -50, 28, 2, 8, -15, -24, 34, 31, 3, -20, -16, -27, -61, 35, 30, 35, -64, -8, -5, -20, 23, 39, 50, -34, 6, 42, -44, 42, -75, -15, 52, -22, 23
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Crossrefs
Programs
-
PARI
A006368(n) = ((3*n)+(n%2))\(2+((n%2)*2)); A006369(n) = if(!(n%3),(2/3)*n,(1/3)*if(1==(n%3),((4*n)-1),((4*n)+1))); memoA349351 = Map(); A349351(n) = if(1==n,1,my(v); if(mapisdefined(memoA349351,n,&v), v, v = -sumdiv(n,d,if(d
A006368(n/d)*A349351(d),0)); mapput(memoA349351,n,v); (v))); A349377(n) = sumdiv(n,d,A006369(d)*A349351(n/d));
Comments