A349379 Möbius transform of A057521 (powerful part of n).
1, 0, 0, 3, 0, 0, 0, 4, 8, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 24, 0, 18, 0, 0, 0, 0, 16, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 54, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 72, 0, 0
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Programs
-
Mathematica
f[p_, e_] := Which[e > 2, p^e - p^(e - 1), e == 2, p^2 - 1, e == 1, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 18 2021 *)
-
PARI
A057521(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)); }; \\ From A057521 A349379(n) = sumdiv(n,d,moebius(n/d)*A057521(d));
-
Python
from math import prod from sympy import factorint def A349379(n): return prod(0 if e==1 else p**e - (1 if e==2 else p**(e-1)) for p,e in factorint(n).items()) # Chai Wah Wu, Nov 14 2022
Comments