cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349420 Primes that do not divide any term of A275027.

Original entry on oeis.org

2, 3, 7, 11, 31, 41, 67, 73, 79, 89, 97, 101, 103, 107, 127, 131, 137, 181, 211, 251, 277, 281, 283, 293, 307, 311, 317, 331, 347, 349, 359, 367, 383, 409, 419, 421, 431, 449, 463, 523, 547, 563, 577, 599, 607, 613, 617, 631, 677, 683, 691, 773, 787, 797, 821, 823, 827, 911, 977
Offset: 1

Views

Author

Michel Marcus, Nov 17 2021

Keywords

Comments

f(n) = A275027(n) is never divisible by a prime p if none of the values f(0), f(1), ..., f(p-1) is divisible by p. See Henningsen and Straub, who ask for an explicit characterization for these primes.

Crossrefs

Cf. A275027.

Programs

  • Mathematica
    f[n_] := f[n] = Sum[Binomial[n, k]^2*Binomial[n - k, k], {k, 0, n/2}]; q[p_] := AllTrue[Table[f[k], {k, 2, p - 1}], ! Divisible[#, p] &]; Select[Range[1000], PrimeQ[#] && q[#] &] (* Amiram Eldar, Nov 17 2021 *)
  • PARI
    f(n) = sum(k=0, n, binomial(n, k)^2*binomial(n-k, k)); \\ A275027
    isdiv(v, n) = {my(p=prime(n)); for (k=1, p, if (!(v[k] % p), return(1));); return(0);}
    lista(nn) = {my(p=prime(nn), v=vector(p, k, f(k-1)), list=List()); for(n=1, nn, if (! isdiv(v, n), listput(list, prime(n)););); Vec(list);}