A349425 n-th stable digit (in decimal system) of n^(n^(...^n)).
1, 3, 3, 8, 0, 2, 5, 9, 3, 0, 7, 4, 5, 8, 6, 7, 8, 3, 1, 0, 1, 4, 4, 8, 7, 8, 0, 6, 4, 0, 9, 8, 0, 1, 0, 3, 5, 8, 7, 0, 6, 8, 2, 4, 1, 0, 3, 3, 3, 0, 2, 3, 5, 2, 3, 6, 8, 7, 0, 0, 7, 3, 3, 5, 0, 8, 0, 0, 8, 0, 7, 8, 8, 0, 3, 0, 6, 9, 1, 0, 7, 7, 6, 6, 5, 7, 3
Offset: 1
Examples
For n = 3, a(3) = 3 since 3^^5 == 387(mod 10^3). Thus, (387(mod 10^3) - 387(mod 10^2))/10^2 = 3.
References
- Marco Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011. ISBN 978-88-6178-789-6.
Links
- Marco Ripà, On the constant congruence speed of tetration, Notes on Number Theory and Discrete Mathematics, 2020, 26(3), 245-260.
- Marco Ripà, The congruence speed formula, Notes on Number Theory and Discrete Mathematics, 2021, 27(4), 43-61.
- Marco Ripà and Luca Onnis, Number of stable digits of any integer tetration, Notes on Number Theory and Discrete Mathematics, 2022, 28(3), 441—457.
- Wikipedia, Tetration.
Crossrefs
Programs
-
Maple
b:= proc(n) option remember; local m, v, w; m, w:= 10^n, n; do v:= n&^w mod m; if w=v then return v else w:=v fi od end: a:= n-> `if`(irem(n, 10)=0, 0, iquo(b(n), 10^(n-1))): seq(a(n), n=1..100); # Alois P. Heinz, Nov 17 2021
-
Python
def A349425(n): if n % 10 == 0: return 0 m, n1, n2 = n, 10**n, 10**(n-1) while (k := pow(n,m,n1)) != m: m = k return k//n2 # Chai Wah Wu, Dec 19 2021
Formula
a(n) = (n^^(n + 2)(mod 10^n) - n^^(n + 2)(mod 10^(n - 1)))/10^(n - 1).
Comments