A349432 Dirichlet convolution of A000027 (the identity function) with A349134 (Dirichlet inverse of Kimberling's paraphrases).
1, 1, 1, 2, 2, 1, 3, 4, 2, 2, 5, 2, 6, 3, 0, 8, 8, 2, 9, 4, 0, 5, 11, 4, 6, 6, 4, 6, 14, 0, 15, 16, 0, 8, 0, 4, 18, 9, 0, 8, 20, 0, 21, 10, -2, 11, 23, 8, 12, 6, 0, 12, 26, 4, 0, 12, 0, 14, 29, 0, 30, 15, -3, 32, 0, 0, 33, 16, 0, 0, 35, 8, 36, 18, -4, 18, 0, 0, 39, 16, 8, 20, 41, 0, 0, 21, 0, 20, 44, -2, 0, 22, 0, 23
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Crossrefs
Programs
-
Mathematica
k[n_] := (n / 2^IntegerExponent[n, 2] + 1)/2; kinv[1] = 1; kinv[n_] := kinv[n] = -DivisorSum[n, kinv[#] * k[n/#] &, # < n &]; a[n_] := DivisorSum[n, # * kinv[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 18 2021 *)
-
PARI
up_to = 16384; DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d
A003602(n) = (1+(n>>valuation(n,2)))/2; v349134 = DirInverseCorrect(vector(up_to,n,A003602(n))); A349134(n) = v349134[n]; A003602(n) = (1+(n>>valuation(n,2)))/2; A055615(n) = (n*moebius(n)); A349432(n) = sumdiv(n,d,d*A349134(n/d));