cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A349436 a(n) = A349434(n) + A349435(n).

Original entry on oeis.org

2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -8, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -8, 0, 0, 0, 20, 0, 0, 0, 0, 0, 0, 0, 12
Offset: 1

Views

Author

Antti Karttunen, Nov 17 2021

Keywords

Crossrefs

Programs

  • Mathematica
    s[n_] := n * DivisorSum[n, 1/# &, !CompositeQ[#] &]; sinv[1] = 1; sinv[n_] := sinv[n] = -DivisorSum[n, sinv[#] * s[n/#] &, # < n &]; f[p_, e_] := e/p; d[1] = 1; d[n_] := n*(1 + Plus @@ f @@@ FactorInteger[n]); dinv[1] = 1; dinv[n_] := dinv[n] = -DivisorSum[n, dinv[#] * d[n/#] &, # < n &];  a[n_] := DivisorSum[n, dinv[#] * s[n/#] + sinv[#] * d[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 18 2021 *)
  • PARI
    A349436(n) = (A349434(n) + A349435(n)); \\ Needs also code from A349434 and A349435.

Formula

a(1) = 2, and for n >1, a(n) = -Sum_{d|n, 1A349434(d) * A349435(n/d). [As the sequences are Dirichlet inverses of each other]

A349394 a(p^e) = p^(e-1) for prime powers, a(n) = 0 for all other n; Dirichlet convolution of A003415 (arithmetic derivative of n) with A055615 (Dirichlet inverse of n).

Original entry on oeis.org

0, 1, 1, 2, 1, 0, 1, 4, 3, 0, 1, 0, 1, 0, 0, 8, 1, 0, 1, 0, 0, 0, 1, 0, 5, 0, 9, 0, 1, 0, 1, 16, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 7, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 32, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 27, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2021

Keywords

Comments

Dirichlet convolution of this sequence with Euler phi (A000010) is A300251.
Convolving this sequence with sigma (A000203) produces A319684.
With a(1) = 1 instead of 0, this would be the Dirichlet convolution of A129283 (A003415(n)+n) with A055615. Thus when we subtract A063524 from that convolution, we get this sequence. (See also A349434). Compare also to the convolution of A069359 (sequence agreeing with A003415 on squarefree numbers) with A055615, which is the characteristic function of primes, A010051. - Antti Karttunen, Nov 20 2021

Crossrefs

Programs

  • Haskell
    import Math.NumberTheory.Primes
    a n = case factorise n of
        [(p,e)] -> unPrime p^(e-1) :: Int
         -> 0 -- _Sebastian Karlsson, Nov 19 2021
  • Mathematica
    f[p_, e_] := e/p; d[1] = 0; d[n_] := n * Plus @@ f @@@ FactorInteger[n]; a[n_] := DivisorSum[n, # * MoebiusMu[#] * d[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 19 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A055615(n) = (n*moebius(n));
    A349394(n) = sumdiv(n,d,A003415(n/d)*A055615(d));
    
  • PARI
    A349394(n) = { my(p=0,e); if((e=isprimepower(n,&p)),p^(e-1),0); }; \\ (After Sebastian Karlsson's new formula) - Antti Karttunen, Nov 20 2021
    

Formula

a(n) = Sum_{d|n} A003415(n/d) * A055615(d).
a(n) = 0 unless n is a prime power (A246655), in which case a(p^e) = p^(e-1). - Sebastian Karlsson, Nov 19 2021
a(n) = A003557(n) * A069513(n). [From above] - Antti Karttunen, Nov 20 2021
Dirichlet g.f.: Sum_{p prime} 1/(p^s-p) [Follows from the D.g.f. of A003415 proved by Haukkanen et al.]. - Sebastian Karlsson, Nov 25 2021
Sum_{k=1..n} a(k) has an average value c*n, where c = A137245 = Sum_{primes p} 1/(p*log(p)) = 1.63661632335... - Vaclav Kotesovec, Mar 03 2023

Extensions

Added Sebastian Karlsson's formula as the new primary definition - Antti Karttunen, Nov 20 2021

A349435 Dirichlet convolution of A230593 with A347084, which is Dirichlet inverse of {n + its arithmetic derivative}.

Original entry on oeis.org

1, 0, 0, -2, 0, 0, 0, -2, -3, 0, 0, 2, 0, 0, 0, -2, 0, 3, 0, 2, 0, 0, 0, 0, -5, 0, -6, 2, 0, 0, 0, -2, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 2, 3, 0, 0, -2, -7, 5, 0, 2, 0, 3, 0, 0, 0, 0, 0, -4, 0, 0, 3, -2, 0, 0, 0, 2, 0, 0, 0, 5, 0, 0, 5, 2, 0, 0, 0, -2, -12, 0, 0, -4, 0, 0, 0, 0, 0, -6, 0, 2, 0, 0, 0, -4, 0, 7, 3
Offset: 1

Views

Author

Antti Karttunen, Nov 17 2021

Keywords

Comments

Dirichlet convolution of this sequence with A348976 is A349338.
The positions of records start as: 1, 12, 18, 36, 100, 108, 196, 225, 324, 441, 500, 1125, 1372, 2500, 5000, 5324, 8575, 8788, 9604, 12500, 19652, etc.

Crossrefs

Cf. A003415, A129283, A230593, A347084, A349434 (Dirichlet inverse), A349436 (sum with it).
Cf. also A348976, A349338.

Programs

  • Mathematica
    s[n_] := n * DivisorSum[n, 1/# &, !CompositeQ[#] &]; f[p_, e_] := e/p; d[1] = 1; d[n_] := n*(1 + Plus @@ f @@@ FactorInteger[n]); dinv[1] = 1; dinv[n_] := dinv[n] = -DivisorSum[n, dinv[#] * d[n/#] &, # < n &]; a[n_] := DivisorSum[n, s[#] * dinv[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 18 2021 *)
  • PARI
    up_to = 20000;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A230593(n) = sumdiv(n, d, ((1==d)||isprime(d))*(n/d));
    v347084 = DirInverseCorrect(vector(up_to,n,n+A003415(n)));
    A347084(n) = v347084[n];
    A349435(n) = sumdiv(n,d,A230593(n/d)*A347084(d));

Formula

a(n) = Sum_{d|n} A230593(n/d) * A347084(d).

A349337 Dirichlet inverse of A230593.

Original entry on oeis.org

1, -3, -4, 3, -6, 13, -8, -3, 4, 19, -12, -16, -14, 25, 25, 3, -18, -17, -20, -22, 33, 37, -24, 19, 6, 43, -4, -28, -30, -87, -32, -3, 49, 55, 49, 33, -38, 61, 57, 25, -42, -113, -44, -40, -29, 73, -48, -22, 8, -25, 73, -46, -54, 21, 73, 31, 81, 91, -60, 125, -62, 97, -37, 3, 85, -165, -68, -58, 97, -163, -72, -52
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2021

Keywords

Comments

Coincides with A347084 on all squarefree numbers (A005117), but also on n=81, where a(81) = A347084(81) = 4. Question: Are there any other such numbers?

Crossrefs

Programs

  • PARI
    up_to = 20000;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA230593(n) = sumdiv(n, d, ((1==d)||isprime(d))*(n/d));
    v349337 = DirInverseCorrect(vector(up_to,n,A230593(n)));
    A349337(n) = v349337[n];

Formula

For n > 1, a(n) = -Sum_{d|n, 1A230593(d) * A349337(n/d).
Showing 1-4 of 4 results.