A349435 Dirichlet convolution of A230593 with A347084, which is Dirichlet inverse of {n + its arithmetic derivative}.
1, 0, 0, -2, 0, 0, 0, -2, -3, 0, 0, 2, 0, 0, 0, -2, 0, 3, 0, 2, 0, 0, 0, 0, -5, 0, -6, 2, 0, 0, 0, -2, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 2, 3, 0, 0, -2, -7, 5, 0, 2, 0, 3, 0, 0, 0, 0, 0, -4, 0, 0, 3, -2, 0, 0, 0, 2, 0, 0, 0, 5, 0, 0, 5, 2, 0, 0, 0, -2, -12, 0, 0, -4, 0, 0, 0, 0, 0, -6, 0, 2, 0, 0, 0, -4, 0, 7, 3
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Crossrefs
Programs
-
Mathematica
s[n_] := n * DivisorSum[n, 1/# &, !CompositeQ[#] &]; f[p_, e_] := e/p; d[1] = 1; d[n_] := n*(1 + Plus @@ f @@@ FactorInteger[n]); dinv[1] = 1; dinv[n_] := dinv[n] = -DivisorSum[n, dinv[#] * d[n/#] &, # < n &]; a[n_] := DivisorSum[n, s[#] * dinv[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 18 2021 *)
-
PARI
up_to = 20000; DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); A230593(n) = sumdiv(n, d, ((1==d)||isprime(d))*(n/d)); v347084 = DirInverseCorrect(vector(up_to,n,n+A003415(n))); A347084(n) = v347084[n]; A349435(n) = sumdiv(n,d,A230593(n/d)*A347084(d));
Comments