A349438 Dirichlet convolution of A000027 with A349348 (Dirichlet inverse of A252463), where A252463 shifts the prime factorization of odd numbers one step towards smaller primes and divides even numbers by two.
1, 1, 1, 1, 2, 0, 2, 1, 3, 0, 4, -1, 2, 0, 2, 1, 4, -1, 2, -2, 2, 0, 4, -2, 10, 0, 9, -2, 6, -4, 2, 1, 4, 0, 4, -4, 6, 0, 2, -4, 4, -4, 2, -4, 6, 0, 4, -3, 14, -4, 4, -2, 6, -6, 8, -4, 2, 0, 6, -6, 2, 0, 6, 1, 4, -8, 6, -4, 4, -8, 4, -6, 2, 0, 10, -2, 8, -4, 6, -6, 27, 0, 4, -6, 8, 0, 6, -8, 6, -16, 4, -4, 2, 0, 4
Offset: 1
Keywords
Links
Crossrefs
Programs
-
Mathematica
f[p_, e_] := NextPrime[p, -1]^e; s[1] = 1; s[n_] := If[EvenQ[n], n/2, Times @@ f @@@ FactorInteger[n]]; sinv[1] = 1; sinv[n_] := sinv[n] = -DivisorSum[n, sinv[#] * s[n/#] &, # < n &]; a[n_] := DivisorSum[n, # * sinv[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 18 2021 *)
-
PARI
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)}; A252463(n) = if(!(n%2),n/2,A064989(n)); memoA349348 = Map(); A349348(n) = if(1==n,1,my(v); if(mapisdefined(memoA349348,n,&v), v, v = -sumdiv(n,d,if(d
A252463(n/d)*A349348(d),0)); mapput(memoA349348,n,v); (v))); A349438(n) = sumdiv(n,d,d*A349348(n/d));
Formula
a(n) = Sum_{d|n} d * A349348(n/d).
Comments