cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A349437 Dirichlet convolution of A252463 with A055615 (Dirichlet inverse of n), where A252463 shifts the prime factorization of odd numbers one step towards smaller primes and divides even numbers by two.

Original entry on oeis.org

1, -1, -1, 0, -2, 2, -2, 0, -2, 4, -4, 0, -2, 4, 2, 0, -4, 4, -2, 0, 2, 8, -4, 0, -6, 4, -4, 0, -6, -4, -2, 0, 4, 8, 4, 0, -6, 4, 2, 0, -4, -4, -2, 0, 4, 8, -4, 0, -10, 12, 4, 0, -6, 8, 8, 0, 2, 12, -6, 0, -2, 4, 4, 0, 4, -8, -6, 0, 4, -8, -4, 0, -2, 12, 6, 0, 8, -4, -6, 0, -8, 8, -4, 0, 8, 4, 6, 0, -6, -8, 4, 0, 2
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2021

Keywords

Comments

Dirichlet convolution of this sequence with Euler phi (A000010) is A348045.

Crossrefs

Cf. A055615, A064989, A252463, A349438 (Dirichlet inverse), A349439 (sum with it).
Cf. also A000010, A348045.

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p, -1]^e; s[1] = 1; s[n_] := If[EvenQ[n], n/2, Times @@ f @@@ FactorInteger[n]]; a[n_] := DivisorSum[n, # * MoebiusMu[#] * s[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 18 2021 *)
  • PARI
    A055615(n) = (n*moebius(n));
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A252463(n) = if(!(n%2),n/2,A064989(n));
    A349437(n) = sumdiv(n,d,A055615(n/d)*A252463(d));

Formula

a(n) = Sum_{d|n} A055615(n/d) * A252463(d).

A349438 Dirichlet convolution of A000027 with A349348 (Dirichlet inverse of A252463), where A252463 shifts the prime factorization of odd numbers one step towards smaller primes and divides even numbers by two.

Original entry on oeis.org

1, 1, 1, 1, 2, 0, 2, 1, 3, 0, 4, -1, 2, 0, 2, 1, 4, -1, 2, -2, 2, 0, 4, -2, 10, 0, 9, -2, 6, -4, 2, 1, 4, 0, 4, -4, 6, 0, 2, -4, 4, -4, 2, -4, 6, 0, 4, -3, 14, -4, 4, -2, 6, -6, 8, -4, 2, 0, 6, -6, 2, 0, 6, 1, 4, -8, 6, -4, 4, -8, 4, -6, 2, 0, 10, -2, 8, -4, 6, -6, 27, 0, 4, -6, 8, 0, 6, -8, 6, -16, 4, -4, 2, 0, 4
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2021

Keywords

Comments

Convolving this sequence with A348045 gives Euler phi, A000010.
It might first seem that A000265(a(p^k)) = p^(k-1) for all odd primes and all exponents k >= 1, but this does not hold for prime 37. However, with p=37, identity A065330(A349438(37^k)) = 37^(k-1) seems to hold for all exponents k >= 1. - Antti Karttunen, Nov 20 2021

Crossrefs

Cf. A000027, A064989, A252463, A349348, A349437 (Dirichlet inverse), A349439 (sum with it).

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p, -1]^e; s[1] = 1; s[n_] := If[EvenQ[n], n/2, Times @@ f @@@ FactorInteger[n]]; sinv[1] = 1; sinv[n_] := sinv[n] = -DivisorSum[n, sinv[#] * s[n/#] &, # < n &]; a[n_] := DivisorSum[n, # * sinv[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 18 2021 *)
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A252463(n) = if(!(n%2),n/2,A064989(n));
    memoA349348 = Map();
    A349348(n) = if(1==n,1,my(v); if(mapisdefined(memoA349348,n,&v), v, v = -sumdiv(n,d,if(dA252463(n/d)*A349348(d),0)); mapput(memoA349348,n,v); (v)));
    A349438(n) = sumdiv(n,d,d*A349348(n/d));

Formula

a(n) = Sum_{d|n} d * A349348(n/d).
Showing 1-2 of 2 results.