cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A349443 a(n) = A349441(n) + A349442(n).

Original entry on oeis.org

2, 0, 0, 1, 0, 4, 0, -3, 4, 8, 0, -6, 0, 12, 16, -1, 0, -8, 0, -12, 24, 20, 0, -6, 16, 24, -16, -18, 0, 0, 0, 5, 40, 32, 48, 14, 0, 36, 48, -12, 0, 0, 0, -30, -32, 44, 0, -2, 36, -24, 64, -36, 0, -16, 80, -18, 72, 56, 0, 8, 0, 60, -48, 7, 96, 0, 0, -48, 88, 0, 0, 6, 0, 72, -48, -54, 120, 0, 0, -4, -20, 80, 0, 12
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2021

Keywords

Crossrefs

Programs

Formula

a(1) = 2, and for n > 1, a(n) = -Sum_{d|n, 1A349441(d) * A349442(n/d). [As the sequences are Dirichlet inverses of each other]

A349442 Dirichlet convolution of A000027 (the identity function) with A349350 (Dirichlet inverse of the powerful part of n).

Original entry on oeis.org

1, 1, 2, -1, 4, 2, 6, -3, -2, 4, 10, -2, 12, 6, 8, -1, 16, -2, 18, -4, 12, 10, 22, -6, -4, 12, -16, -6, 28, 8, 30, 5, 20, 16, 24, 2, 36, 18, 24, -12, 40, 12, 42, -10, -8, 22, 46, -2, -6, -4, 32, -12, 52, -16, 40, -18, 36, 28, 58, -8, 60, 30, -12, 7, 48, 20, 66, -16, 44, 24, 70, 6, 72, 36, -8, -18, 60, 24, 78, -4
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2021

Keywords

Comments

Multiplicative because both A000027 and A349350 are.

Crossrefs

Cf. A000027, A057521, A349350, A349441 (Dirichlet inverse), A349443 (sum with it).

Programs

  • PARI
    A057521(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)); }; \\ From A057521
    memoA349350 = Map();
    A349350(n) = if(1==n,1,my(v); if(mapisdefined(memoA349350,n,&v), v, v = -sumdiv(n,d,if(dA057521(n/d)*A349350(d),0)); mapput(memoA349350,n,v); (v)));
    A349442(n) = sumdiv(n,d,d*A349350(n/d));

Formula

a(n) = Sum_{d|n} d * A349350(n/d).

A349379 Möbius transform of A057521 (powerful part of n).

Original entry on oeis.org

1, 0, 0, 3, 0, 0, 0, 4, 8, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 24, 0, 18, 0, 0, 0, 0, 16, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 54, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 72, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2021

Keywords

Comments

Multiplicative with a(p^e) = 0 if e = 1, p^2 - 1 if e = 2 and p^e - p^(e-1) otherwise. - Amiram Eldar, Nov 18 2021

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Which[e > 2, p^e - p^(e - 1), e == 2, p^2 - 1, e == 1, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 18 2021 *)
  • PARI
    A057521(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)); }; \\ From A057521
    A349379(n) = sumdiv(n,d,moebius(n/d)*A057521(d));
    
  • Python
    from math import prod
    from sympy import factorint
    def A349379(n): return prod(0 if e==1 else p**e - (1 if e==2 else p**(e-1)) for p,e in factorint(n).items()) # Chai Wah Wu, Nov 14 2022

Formula

a(n) = Sum_{d|n} A008683(n/d) * A057521(d).
a(n) = Sum_{d|n} A000010(n/d) * A349441(d).
Showing 1-3 of 3 results.