cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349442 Dirichlet convolution of A000027 (the identity function) with A349350 (Dirichlet inverse of the powerful part of n).

Original entry on oeis.org

1, 1, 2, -1, 4, 2, 6, -3, -2, 4, 10, -2, 12, 6, 8, -1, 16, -2, 18, -4, 12, 10, 22, -6, -4, 12, -16, -6, 28, 8, 30, 5, 20, 16, 24, 2, 36, 18, 24, -12, 40, 12, 42, -10, -8, 22, 46, -2, -6, -4, 32, -12, 52, -16, 40, -18, 36, 28, 58, -8, 60, 30, -12, 7, 48, 20, 66, -16, 44, 24, 70, 6, 72, 36, -8, -18, 60, 24, 78, -4
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2021

Keywords

Comments

Multiplicative because both A000027 and A349350 are.

Crossrefs

Cf. A000027, A057521, A349350, A349441 (Dirichlet inverse), A349443 (sum with it).

Programs

  • PARI
    A057521(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)); }; \\ From A057521
    memoA349350 = Map();
    A349350(n) = if(1==n,1,my(v); if(mapisdefined(memoA349350,n,&v), v, v = -sumdiv(n,d,if(dA057521(n/d)*A349350(d),0)); mapput(memoA349350,n,v); (v)));
    A349442(n) = sumdiv(n,d,d*A349350(n/d));

Formula

a(n) = Sum_{d|n} d * A349350(n/d).