A349442 Dirichlet convolution of A000027 (the identity function) with A349350 (Dirichlet inverse of the powerful part of n).
1, 1, 2, -1, 4, 2, 6, -3, -2, 4, 10, -2, 12, 6, 8, -1, 16, -2, 18, -4, 12, 10, 22, -6, -4, 12, -16, -6, 28, 8, 30, 5, 20, 16, 24, 2, 36, 18, 24, -12, 40, 12, 42, -10, -8, 22, 46, -2, -6, -4, 32, -12, 52, -16, 40, -18, 36, 28, 58, -8, 60, 30, -12, 7, 48, 20, 66, -16, 44, 24, 70, 6, 72, 36, -8, -18, 60, 24, 78, -4
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Programs
-
PARI
A057521(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)); }; \\ From A057521 memoA349350 = Map(); A349350(n) = if(1==n,1,my(v); if(mapisdefined(memoA349350,n,&v), v, v = -sumdiv(n,d,if(d
A057521(n/d)*A349350(d),0)); mapput(memoA349350,n,v); (v))); A349442(n) = sumdiv(n,d,d*A349350(n/d));
Formula
a(n) = Sum_{d|n} d * A349350(n/d).
Comments