cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349447 Dirichlet convolution of A003602 (Kimberling's paraphrases) with A326937 (Dirichlet inverse of A000265).

Original entry on oeis.org

1, 0, -1, 0, -2, 0, -3, 0, -1, 0, -5, 0, -6, 0, 4, 0, -8, 0, -9, 0, 6, 0, -11, 0, -2, 0, -1, 0, -14, 0, -15, 0, 10, 0, 12, 0, -18, 0, 12, 0, -20, 0, -21, 0, 4, 0, -23, 0, -3, 0, 16, 0, -26, 0, 20, 0, 18, 0, -29, 0, -30, 0, 6, 0, 24, 0, -33, 0, 22, 0, -35, 0, -36, 0, 4, 0, 30, 0, -39, 0, -1, 0, -41, 0, 32, 0, 28
Offset: 1

Views

Author

Antti Karttunen, Nov 19 2021

Keywords

Comments

Dirichlet convolution of this sequence with A264740 is A349371.

Crossrefs

Cf. A000265, A003602, A326937, A349448 (Dirichlet inverse).

Programs

  • Mathematica
    k[n_] := (n/2^IntegerExponent[n, 2] + 1)/2; a[n_] := DivisorSum[n, MoebiusMu[#] * # / 2^IntegerExponent[#, 2] * k[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 19 2021 *)
  • PARI
    A003602(n) = (1+(n>>valuation(n,2)))/2;
    A006519(n) = (1<A055615(n) = (n*moebius(n));
    A326937(n) = (A055615(n)/A006519(n));
    A349447(n) = sumdiv(n,d,A003602(d)*A326937(n/d));

Formula

a(n) = Sum_{d|n} A003602(d) * A326937(n/d).