A349458 Number of smooth positroids in the Grassmannian variety Gr(k,n) for a fixed n and any 0 <= k <= n.
1, 2, 5, 16, 61, 256, 1132, 5174, 24229, 115654, 560741, 2754082, 13674212, 68522208, 346100952, 1760213254, 9006390373, 46329244034, 239455376071, 1242923653316, 6476376834789, 33863408028888, 177625109853808, 934404580376016
Offset: 0
Keywords
Examples
For n = 3, the a(3) = 16 positroids correspond the decorated permutations with underlying permutations 231, 312, 321, 213, 132, and 123 in one-line notation. Each fixed point, e.g., the 2 in 321, can be colored in two ways. Hence 321, 213, and 132 contribute 2 decorated permutations each, 123 contributes 8, while 231 and 312 each contribute 1.
Links
- Jordan Weaver, Table of n, a(n) for n = 0..50
- Sara C. Billey and Jordan E. Weaver, Criteria for smoothness of Positroid varieties via pattern avoidance, Johnson graphs, and spirographs, arXiv:2207.06508 [math.CO], 2022.
- S. Corteel, Crossings and alignments of permutations, arXiv:math/0601469 [math.CO], 2006.
- A. Knutson, T. Lam and D. Speyer, Positroid varieties: juggling and geometry, Compos. Math. 149 (2013), no. 10, 1710-1752.
- A. Postnikov, Total positivity, Grassmannians, and networks, arXiv:math/0609764 [math.CO], 2006.
Formula
Extensions
a(10)-a(23) from Jordan Weaver, Apr 19 2022
Comments