A349461 Primes of the form m^2 + 9*m + 81.
61, 67, 73, 103, 151, 193, 271, 367, 523, 613, 661, 991, 1117, 1321, 1543, 1621, 1783, 1867, 2131, 2713, 3253, 3967, 4093, 4483, 6067, 6703, 7717, 8803, 9181, 10567, 11617, 11833, 13171, 13633, 14341, 15313
Offset: 1
Examples
61 = (-4)^2 + 9*(-4) + 81; 67 = (-2)^2 + 9*(-2) + 81; 73 = (-1)^2 + 9*(-1) + 81; 103 = (2)^2 + 9*(2) + 81. 3 is a cube mod p: 4^3 == 3 (mod 61); 18^3 == 3 (mod 67); 25^3 == 3 (mod 73); 67^3 == 3 (mod 103).
References
- K. Ireland and M. Rosen, A classical introduction to modern number theory, Vol. 84, Graduate Texts in Mathematics, Springer-Verlag.
Links
- Peter Bala, Notes on the period polynomial for the cubic Gaussian periods
- Keith Conrad, Galois groups of cubics and quartics (not in characteristic 2)
- Ki-Ichiro Hashimoto and Akinari Hoshi, Families of cyclic polynomials obtained from geometric generalization of Gaussian period relations, Math. Comp., Vol. 74, No. 251, 2005, pp. 1519-1530
- D. H. Lehmer and Emma Lehmer, The Lehmer Project, Math. of Comp., Vol. 61, No. 203, 1993, pp. 313-317.
- D. Shanks, The simplest cubic fields, Math. Comp., 28 (1974), 1137-1152
Programs
-
Mathematica
Select[Table[m^2+9*m+81, {m, -4, 120}], PrimeQ]
-
PARI
for (m = -4, 120, my(p = m^2 + 9*m + 81); if (isprime(p), print1(p,", ")));
Comments