cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A349689 a(n) is the least number k such that the sequence of elements of the abundancy index of k is palindromic with length n, or -1 if no such k exists.

Original entry on oeis.org

1, 24, 30, 90, 96, 342, 744, 812160, 330, 147258, 32784, 3314062080, 25896, 565632, 116412, 210317184, 145176, 6182491392, 963108
Offset: 1

Views

Author

Amiram Eldar, Nov 25 2021

Keywords

Comments

a(21) = 7094832, a(23) = 24167070, a(25) = 858983598, a(27) = 1137635260, a(29) = 1402857468, a(31) = 45230309244, and there are no more terms below 1.6*10^11.

Examples

			The elements of the continued fractions of the abundancy index of the terms are:
   n        a(n)  elements
  --    --------  -------------------------------------
   1           1  1
   2          24  2,2
   3          30  2,2,2
   4          90  2,1,1,2
   5          96  2,1,1,1,2
   6         342  2,3,1,1,3,2
   7         744  2,1,1,2,1,1,2
   8      812160  3,1,1,1,1,1,1,3
   9         330  2,1,1,1,1,1,1,1,2
  10      147258  2,3,1,2,5,5,2,1,3,2
  11       32784  2,1,1,2,2,1,2,2,1,1,2
  12  3314062080  4,2,1,1,2,1,1,2,1,1,2,4
  13       25896  2,1,2,1,1,1,2,1,1,1,2,1,2
  14      565632  2,1,7,1,1,2,1,1,2,1,1,7,1,2
  15      116412  2,2,1,1,1,1,1,8,1,1,1,1,1,2,2
  16   210317184  3,1,1,2,3,3,2,1,1,2,3,3,2,1,1,3
  17      145176  2,1,1,1,1,1,1,1,4,1,1,1,1,1,1,1,2
  18  6182491392  3,1,1,2,7,3,2,2,1,1,2,2,3,7,2,1,1,3
  19      963108  2,1,1,1,1,2,1,1,1,3,1,1,1,2,1,1,1,1,2
		

Crossrefs

Similar sequence: A349478.

Programs

  • Mathematica
    cfai[n_] := ContinuedFraction[DivisorSigma[1, n]/n]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i, cf}, While[c < len && n < nmax, cf = cfai[n]; If[PalindromeQ[cf] && (i = Length[cf]) <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; TakeWhile[s, # > 0 &]]; seq[11, 10^6]
  • PARI
    isok(k, n) = my(v=contfrac(sigma(k)/k)); (#v == n) && (v == Vecrev(v));
    a(n) = my(k=1); while (!isok(k, n), k++); k; \\ Michel Marcus, Nov 25 2021
Showing 1-1 of 1 results.