cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349484 Niven numbers whose arithmetic derivative is also a Niven number (A005349).

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 10, 18, 20, 21, 27, 36, 48, 50, 54, 72, 81, 100, 108, 111, 112, 135, 153, 156, 180, 192, 201, 209, 210, 216, 224, 225, 230, 243, 280, 288, 306, 324, 336, 351, 364, 378, 392, 400, 405, 407, 420, 432, 441, 480, 481, 486, 500, 504, 511, 512
Offset: 1

Views

Author

Marius A. Burtea, Nov 20 2021

Keywords

Comments

The sequence is infinite because the numbers of the form m = 2*10^(10^k), k >= 1, are terms. Indeed, m is a Niven number, m' = 10^(10^k) + 2*10^k*10^(10^k - 1)*7 = 10^(10^k - 1)*(10 + 140*10^k) = 10^(10^k)*(1 + 14*10^k), digsum(m') = 6 and m' is divisible by 6, so it is a Niven number.

Examples

			2 = A005349(2) and 2' = 1 = A005349(1), so 2 is a term.
18 = A005349(12) and 18' = 21 = A005349(14), so 18 is a term.
		

Crossrefs

Cf. A002808, A005349 (Niven numbers), A003415 (arithmetic derivative).

Programs

  • Magma
    f:=func; a:=[]; niven:=func; [n:n in [2..520]|niven(n) and niven(Floor(f(n)))];
  • Mathematica
    nivenQ[n_] := Divisible[n, Plus @@ IntegerDigits[n]]; d[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[2, 512], And @@ nivenQ /@ {#, d[#]} &] (* Amiram Eldar, Nov 20 2021 *)