cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349487 a(n) = A132739((n-5)*(n+5)).

Original entry on oeis.org

11, 24, 39, 56, 3, 96, 119, 144, 171, 8, 231, 264, 299, 336, 3, 416, 459, 504, 551, 24, 651, 704, 759, 816, 7, 936, 999, 1064, 1131, 48, 1271, 1344, 1419, 1496, 63, 1656, 1739, 1824, 1911, 16, 2091, 2184, 2279, 2376, 99, 2576, 2679, 2784, 2891, 24, 3111
Offset: 6

Views

Author

Simon Strandgaard, Nov 19 2021

Keywords

Comments

Shares 614 initial terms with A061043. First difference is A061043(620)=615 vs. a(620)=123.

Examples

			a(9)  = A132739(( 9-5)*( 9+5)) = A132739(56) = 56,
a(10) = A132739((10-5)*(10+5)) = A132739(75) = 3,
a(11) = A132739((11-5)*(11+5)) = A132739(96) = 96.
		

Crossrefs

Programs

  • Mathematica
    Table[Last@Select[Divisors[(n - 5)*(n + 5)], Mod[#, 5] != 0 &], {n, 6,
       56}] (* Giorgos Kalogeropoulos, Nov 19 2021 *)
    Table[(n - 5)*(n + 5)/5^IntegerExponent[(n - 5)*(n + 5), 5], {n, 6, 56}] (* Amiram Eldar, Nov 22 2021 *)
  • PARI
    A132739(n)=n/5^valuation(n, 5);
    a(n) = A132739((n-5)*(n+5));
    [a(n)|n<-[6..25]]
    
  • Python
    def A349487(n):
        a, b = divmod(n*n-25, 5)
        while b == 0:
            a, b = divmod(a,5)
        return 5*a+b # Chai Wah Wu, Dec 05 2021
  • Ruby
    p (6..25).map { |n| x = (n-5)*(n+5); x /= 5 while (x % 5) == 0; x }
    

Formula

a(n) = A132739(A098603(n-5)).