cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349509 a(n) is the denominator of binomial(n^3 + 6*n^2 - 6*n + 2, n^3 - 1)/n^3.

Original entry on oeis.org

1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Stefano Spezia, Nov 20 2021

Keywords

Comments

a(n) is the denominator of an upper bound of the number of vertices of the polytope of the n X n X n stochastic tensors, or equivalently, of the number of Latin squares of order n, or equivalently, of the number of n X n X n line-stochastic (0,1)-tensors (see Chang et al. and Zhang et al.).
Conjecture: 1 and 3 are the only terms that appear in this sequence.
This conjecture is correct, see formula. - Kevin Ryde, Jul 01 2023

Crossrefs

Cf. A349506, A349507, A349508 (numerators), A349510, A349511, A349512.
Cf. A363739 (run lengths), A349929 (indices of 3's).

Programs

  • Mathematica
    a[n_]:=Denominator[Binomial[n^3+6n^2-6n+2,n^3-1]/n^3]; Array[a,90]
  • PARI
    \\ See links.
  • Python
    from math import gcd, comb
    def A349509(n): return n**3//gcd(comb(n*(n*(n + 6) - 6) + 2,6*n*(n-1)+3),n**3) # Chai Wah Wu, Dec 06 2021
    

Formula

A349508(n)/a(n) <= A349510(n) < A349511(n) < A349512(n) (see Corollary 7 in Zhang et al., 2021).
A349508(n)/a(n) ~ 2^(-4 + 6*n - 6*n^2)*3^(-7/2 + 6*n - 6*n^2)*e^(-75 + 233/n + 18*n + 6*n^2)*n^(-1 - 6*n + 6*n^2)/sqrt(Pi).
a(n) = 1 if n=1 or any x[i] + y[i] >= 3 where x and y are the ternary digits of n^3 = Sum x[i]*3^i and 6*n^2 - 6*n + 3 = Sum y[i]*3^i; and a(n) = 3 otherwise. - Kevin Ryde, Jul 01 2023