cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A349536 Consider a circle on the Z X Z lattice with radius equal to the Pythagorean hypotenuse h(n) (A009003); a(n) = number of Pythagorean triples inside a Pi/4 sector of the circle.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 37, 38, 39, 40, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 75, 76, 77, 78, 79, 80, 84, 85, 86, 87, 89
Offset: 1

Views

Author

Alexander Kritov, Nov 21 2021

Keywords

Comments

Number of Pythagorean triples with hypotenuse less than or equal to the next one.

Examples

			The count of non-primitive Pythagorean triples as they appear in order of increasing hypotenuse:
.
       Hypotenuse
   n  (A009003(n))       Sides       a(n)
  --  ------------  ---------------  ----
   1        5            (3,4)         1
   2       10            (6,8)         2
   3       13            (5,12)        3
   4       15            (9,12)        4
   5       17            (8,15)        5
   6       20           (12,16)        6
   7       25       (7,24), (15,20)    8
   8       26           (10,24)        9
   9       29           (20,21)       10
		

References

  • W. Sierpinski, Pythagorean Triangles, Dover Publications, 2003.

Crossrefs

Cf. A349538 (extension to the full circle of Z^2 lattice).

Programs

  • C
    // see enclosed main.c
    for (long j=1;j< 101;++j)
    {
    for (long k=1;k< 101;++k)
    {
    if (k<=j)   // to avoid pairs (as we need 1/8 or quarter plane)
        {
              double hyp=sqrt(j*j+k*k);
              double c= (double) floor (hyp );
    if   (fabs(hyp - c) < DBL_EPSILON)  arr[r++]= (long) c;
    }}}
    bubbleSort(arr, r);//sort by hypotenuse increase
    for (long j=0;j< r;++j)
    {
       if  ( arr[j] != arr[j+1] )
        {
            // write to file: j is the sequence value a[n]*2
            // arr[j] is the hypotenuse value
        }
    }

Formula

Conjecture: the increment is a(n+1) - a(n) = 2^(m-1), where m is the sum of all powers of the Pythagorean primes (A002144) in the factorization of hypotenuse h(n+1) (see Eckert for PPT). However, starting from 58 the increment is 3.
Showing 1-1 of 1 results.