A349566 Dirichlet convolution of A011782 (2^(n-1)) with A349451 (Dirichlet inverse of Fibonacci numbers).
1, 1, 2, 4, 11, 20, 51, 100, 218, 441, 935, 1862, 3863, 7751, 15742, 31648, 63939, 128180, 257963, 516974, 1037502, 2078417, 4165647, 8339900, 16702136, 33428943, 66911942, 133891584, 267921227, 536021340, 1072395555, 2145272320, 4291440670, 8584166169, 17170641321, 34344672290, 68695318919, 137399603159, 274814652766
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..1001
Programs
-
Mathematica
s[1] = 1; s[n_] := s[n] = -DivisorSum[n, s[#] * Fibonacci[n/#] &, # < n &]; a[n_] := DivisorSum[n, 2^(# - 1) * s[n/#] &]; Array[a, 40] (* Amiram Eldar, Nov 22 2021 *)
-
PARI
memoA349451 = Map(); A349451(n) = if(1==n,1,my(v); if(mapisdefined(memoA349451,n,&v), v, v = -sumdiv(n,d,if(d
A349451(d),0)); mapput(memoA349451,n,v); (v))); A349566(n) = sumdiv(n,d,(2^(d-1)) * A349451(n/d));
Formula
a(n) = Sum_{d|n} 2^(d-1) * A349451(n/d).
Comments