cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349566 Dirichlet convolution of A011782 (2^(n-1)) with A349451 (Dirichlet inverse of Fibonacci numbers).

Original entry on oeis.org

1, 1, 2, 4, 11, 20, 51, 100, 218, 441, 935, 1862, 3863, 7751, 15742, 31648, 63939, 128180, 257963, 516974, 1037502, 2078417, 4165647, 8339900, 16702136, 33428943, 66911942, 133891584, 267921227, 536021340, 1072395555, 2145272320, 4291440670, 8584166169, 17170641321, 34344672290, 68695318919, 137399603159, 274814652766
Offset: 1

Views

Author

Antti Karttunen, Nov 22 2021

Keywords

Comments

Dirichlet convolution of this sequence with A034748 produces A034738.

Crossrefs

Cf. A000045, A011782, A349451, A349565 (Dirichlet inverse).

Programs

  • Mathematica
    s[1] = 1; s[n_] := s[n] = -DivisorSum[n, s[#] * Fibonacci[n/#] &, # < n &]; a[n_] := DivisorSum[n, 2^(# - 1) * s[n/#] &]; Array[a, 40] (* Amiram Eldar, Nov 22 2021 *)
  • PARI
    memoA349451 = Map();
    A349451(n) = if(1==n,1,my(v); if(mapisdefined(memoA349451,n,&v), v, v = -sumdiv(n,d,if(dA349451(d),0)); mapput(memoA349451,n,v); (v)));
    A349566(n) = sumdiv(n,d,(2^(d-1)) * A349451(n/d));

Formula

a(n) = Sum_{d|n} 2^(d-1) * A349451(n/d).