cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349569 Dirichlet convolution of A000027 (identity function) with A349452 (Dirichlet inverse of A011782, 2^(n-1)).

Original entry on oeis.org

1, 0, -1, -4, -11, -24, -57, -112, -243, -480, -1013, -1964, -4083, -8064, -16309, -32496, -65519, -130440, -262125, -523156, -1048263, -2095104, -4194281, -8383760, -16777015, -33546240, -67107609, -134200860, -268435427, -536835096, -1073741793, -2147417216, -4294962187, -8589803520, -17179867533, -34359463812
Offset: 1

Views

Author

Antti Karttunen, Nov 22 2021

Keywords

Comments

Dirichlet convolution with A034729 gives sigma, A000203, and convolution with A034738 gives A018804.

Crossrefs

Cf. A000027, A011782, A349452, A349570 (Dirichlet inverse).

Programs

  • Mathematica
    s[1] = 1; s[n_] := s[n] = -DivisorSum[n, s[#]*2^(n/# - 1) &, # < n &]; a[n_] := DivisorSum[n, # * s[n/#] &]; Array[a, 36] (* Amiram Eldar, Nov 22 2021 *)
  • PARI
    A011782(n) = (2^(n-1));
    memoA349452 = Map();
    A349452(n) = if(1==n,1,my(v); if(mapisdefined(memoA349452,n,&v), v, v = -sumdiv(n,d,if(dA011782(n/d)*A349452(d),0)); mapput(memoA349452,n,v); (v)));
    A349569(n) = sumdiv(n,d,d * A349452(n/d));

Formula

a(n) = Sum_{d|n} d * A349452(n/d).