A349611 Number of solutions to x^2 + y^2 + z^2 + w^2 <= n^2, where x, y, z, w are positive odd integers.
0, 0, 1, 1, 5, 11, 32, 44, 82, 120, 207, 277, 405, 541, 768, 966, 1272, 1592, 2087, 2489, 3103, 3719, 4588, 5348, 6386, 7522, 8891, 10175, 11909, 13623, 15818, 17742, 20278, 22720, 25923, 28917, 32361, 36031, 40368, 44488, 49400, 54358, 60377, 65835, 72341
Offset: 0
Keywords
Examples
a(4) = 5 since there are solutions (1,1,1,1), (3,1,1,1), (1,3,1,1), (1,1,3,1), (1,1,1,3).
Links
Programs
-
Maple
N:= 100: # for a(0) .. a(N) F:= add(x^(k^2),k = 1 ... N,2): F:= expand(F^4): L:= ListTools:-PartialSums([seq](coeff(F,x,n),n=0..N^2)): L[[seq(n^2+1,n=0..N)]]; # Robert Israel, Dec 21 2023
-
Mathematica
Table[SeriesCoefficient[EllipticTheta[2, 0, x^4]^4/(16 (1 - x)), {x, 0, n^2}], {n, 0, 44}]
Formula
a(n) = [x^(n^2)] theta_2(x^4)^4 / (16 * (1 - x)).