cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349618 Dirichlet convolution of arithmetic derivative with A325126 [Dirichlet inverse of rad(n)].

Original entry on oeis.org

0, 1, 1, 2, 1, 0, 1, 6, 3, 0, 1, 2, 1, 0, 0, 14, 1, 6, 1, 2, 0, 0, 1, 2, 5, 0, 15, 2, 1, 0, 1, 34, 0, 0, 0, 18, 1, 0, 0, 2, 1, 0, 1, 2, 6, 0, 1, 6, 7, 20, 0, 2, 1, 6, 0, 2, 0, 0, 1, 0, 1, 0, 6, 78, 0, 0, 1, 2, 0, 0, 1, 42, 1, 0, 20, 2, 0, 0, 1, 6, 51, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 2, 0, 0, 0, 10, 1, 42, 6, 50, 1, 0, 1, 2, 0
Offset: 1

Views

Author

Antti Karttunen, Nov 23 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := e/p; d[1] = 0; d[n_] := n*Plus @@ f @@@ FactorInteger[n]; f2[p_, e_] := -p*(1 - p)^(e - 1); s[1] = 1; s[n_] := Times @@ f2 @@@ FactorInteger[n]; a[n_] := DivisorSum[n, d[#]*s[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 23 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A007947(n) = factorback(factorint(n)[, 1]); \\ From A007947
    memoA325126 = Map();
    A325126(n) = if(1==n,1,my(v); if(mapisdefined(memoA325126,n,&v), v, v = -sumdiv(n,d,if(dA007947(n/d)*A325126(d),0)); mapput(memoA325126,n,v); (v)));
    A349618(n) = sumdiv(n,d,A003415(d)*A325126(n/d));

Formula

a(n) = Sum_{d|n} A003415(d) * A325126(n/d).