cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349619 Dirichlet convolution of A003415 with the Dirichlet inverse of A003557.

Original entry on oeis.org

0, 1, 1, 3, 1, 3, 1, 7, 5, 5, 1, 7, 1, 7, 6, 15, 1, 9, 1, 13, 8, 11, 1, 15, 9, 13, 19, 19, 1, 14, 1, 31, 12, 17, 10, 17, 1, 19, 14, 29, 1, 20, 1, 31, 24, 23, 1, 31, 13, 25, 18, 37, 1, 27, 14, 43, 20, 29, 1, 30, 1, 31, 34, 63, 16, 32, 1, 49, 24, 34, 1, 33, 1, 37, 34, 55, 16, 38, 1, 61, 65, 41, 1, 44, 20, 43, 30, 71
Offset: 1

Views

Author

Antti Karttunen, Nov 25 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := e/p; d[1] = 0; d[n_] := n*Plus @@ f1 @@@ FactorInteger[n]; f[p_, e_] := -(p - 1)^(e - 1); s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; a[n_] := DivisorSum[n, s[#]*d[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 25 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A349340(n) = { my(f=factor(n)); prod(i=1, #f~, -((f[i,1]-1)^(f[i,2]-1))); };
    A349619(n) = sumdiv(n,d,A003415(n/d)*A349340(d));

Formula

a(n) = Sum_{d|n} A003415(n/d) * A349340(d).