A349620 Dirichlet convolution of A003415 with the Dirichlet inverse of A003958.
0, 1, 1, 3, 1, 2, 1, 8, 4, 2, 1, 5, 1, 2, 2, 20, 1, 7, 1, 5, 2, 2, 1, 12, 6, 2, 15, 5, 1, 3, 1, 48, 2, 2, 2, 17, 1, 2, 2, 12, 1, 3, 1, 5, 7, 2, 1, 28, 8, 11, 2, 5, 1, 24, 2, 12, 2, 2, 1, 7, 1, 2, 7, 112, 2, 3, 1, 5, 2, 3, 1, 40, 1, 2, 11, 5, 2, 3, 1, 28, 54, 2, 1, 7, 2, 2, 2, 12, 1, 10, 2, 5, 2, 2, 2, 64, 1, 15
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Programs
-
Mathematica
f[p_, e_] := e/p; d[1] = 0; d[n_] := n*Plus @@ f @@@ FactorInteger[n]; a[n_] := DivisorSum[n, MoebiusMu[#] * EulerPhi[#] * d[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 25 2021 *)
-
PARI
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); A097945(n) = (moebius(n)*eulerphi(n)); \\ Also Dirichlet inverse of A003958. A349620(n) = sumdiv(n,d,A003415(n/d)*A097945(d));