cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A349161 a(n) = A003961(n) / gcd(sigma(n), A003961(n)), where A003961 shifts the prime factorization of n one step towards larger primes, and sigma is the sum of divisors function.

Original entry on oeis.org

1, 1, 5, 9, 7, 5, 11, 9, 25, 7, 13, 45, 17, 11, 35, 81, 19, 25, 23, 3, 55, 13, 29, 9, 49, 17, 25, 99, 31, 35, 37, 27, 65, 19, 77, 225, 41, 23, 85, 21, 43, 55, 47, 39, 175, 29, 53, 405, 121, 49, 95, 153, 59, 25, 91, 99, 23, 31, 61, 15, 67, 37, 275, 729, 17, 65, 71, 19, 145, 77, 73, 45, 79, 41, 245, 207, 143, 85, 83
Offset: 1

Views

Author

Antti Karttunen, Nov 09 2021

Keywords

Comments

Numerator of ratio A003961(n) / A000203(n). Sequence A349162 gives the denominators.
Numerator of ratio A003961(n) / A161942(n). Sequence A348992 gives the denominators.
Both ratios are multiplicative because the constituent sequences are.
No 1's occur as terms after a(2), because for n > 2, sigma(n) < A003961(n). (See A286385).

Crossrefs

Programs

  • Mathematica
    Array[#2/GCD[##] & @@ {DivisorSigma[1, #], If[# == 1, 1, Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]]} &, 79] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A349161(n) = { my(u=A003961(n)); (u/gcd(u,sigma(n))); };
    
  • Python
    from math import prod, gcd
    from sympy import nextprime, factorint
    def A349161(n):
        f = factorint(n).items()
        a = prod(nextprime(p)**e for p, e in f)
        b = prod((p**(e+1)-1)//(p-1) for p, e in f)
        return a//gcd(a,b) # Chai Wah Wu, Mar 17 2023

Formula

a(n) = A003961(n) / A342671(n) = A003961(n) / gcd(A000203(n), A003961(n)).
a(n) = A003961(A349164(n)).

A349162 a(n) = sigma(n) / gcd(sigma(n), A003961(n)), where A003961 shifts the prime factorization of n one step towards larger primes, and sigma is the sum of divisors function.

Original entry on oeis.org

1, 1, 4, 7, 6, 4, 8, 5, 13, 6, 12, 28, 14, 8, 24, 31, 18, 13, 20, 2, 32, 12, 24, 4, 31, 14, 8, 56, 30, 24, 32, 7, 48, 18, 48, 91, 38, 20, 56, 10, 42, 32, 44, 28, 78, 24, 48, 124, 57, 31, 72, 98, 54, 8, 72, 40, 16, 30, 60, 8, 62, 32, 104, 127, 12, 48, 68, 14, 96, 48, 72, 13, 74, 38, 124, 140, 96, 56, 80, 62, 121, 42
Offset: 1

Views

Author

Antti Karttunen, Nov 09 2021

Keywords

Comments

Denominator of ratio A003961(n) / A000203(n).
Small values are rare, but are not limited to the beginning. For example in range 1 .. 2^25, a(n) = 4 at n = 3, 6, 24, 792, 2720, 122944, 31307472.
Question: Would it be possible to prove that a(n) > 1 for all n > 2?
Obviously, 1's may occur only on squares & twice squares (A028982). See also comments in A350072. - Antti Karttunen, Feb 16 2022

Crossrefs

Cf. A000203, A003961, A028982 (positions of odd terms), A319630, A336702, A342671, A348992 (the odd part), A348993, A349161 (numerators), A349163, A349164, A349627, A349628, A350072 [= a(n^2)].
Cf. also A349745, A351551, A351554.

Programs

  • Mathematica
    Array[#1/GCD[##] & @@ {DivisorSigma[1, #], If[# == 1, 1, Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]]} &, 82] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A349162(n) = { my(s=sigma(n)); (s/gcd(s,A003961(n))); };

Formula

a(n) = A000203(n) / A342671(n) = A000203(n) / gcd(A000203(n), A003961(n)).

A349628 Denominators of the Möbius transform of ratio A003961(n)/sigma(n).

Original entry on oeis.org

1, 1, 4, 7, 6, 1, 8, 35, 52, 1, 12, 14, 14, 1, 24, 155, 18, 1, 20, 21, 32, 1, 24, 70, 186, 1, 104, 28, 30, 1, 32, 217, 48, 1, 16, 26, 38, 1, 56, 35, 42, 1, 44, 42, 312, 1, 48, 310, 456, 1, 72, 49, 54, 1, 72, 140, 80, 1, 60, 84, 62, 1, 416, 889, 28, 1, 68, 63, 96, 1, 72, 26, 74, 1, 744, 70, 32, 1, 80, 155, 968, 1, 84
Offset: 1

Views

Author

Antti Karttunen, Nov 26 2021

Keywords

Comments

Because the ratio A003961(n)/A000203(n) is multiplicative, so is also its Möbius transform. This sequence gives the denominator of that ratio when presented in its lowest terms.

Crossrefs

Cf. A349627 (numerators).

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p]^e*(p - 1)/(p^(e + 1) - 1); s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; a[n_] := Denominator @ DivisorSum[n, s[#] * MoebiusMu[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 27 2021 *)
  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A349628(n) = denominator(sumdiv(n,d,moebius(n/d)*(A003961(d)/sigma(d))));

A354827 Numerators of Dirichlet inverse of fraction A003961(n) / sigma(n).

Original entry on oeis.org

1, -1, -5, -2, -7, 5, -11, -8, -75, 7, -13, 5, -17, 11, 35, -1648, -19, 75, -23, 1, 55, 13, -29, 2, -245, 17, -225, 11, -31, -35, -37, -1664, 65, 19, 77, 75, -41, 23, 85, 4, -43, -55, -47, 13, 175, 29, -53, 412, -847, 245, 95, 17, -59, 225, 91, 11, 23, 31, -61, -5, -67, 37, 825, -7662464, 17, -65, -71, 19, 145, -77
Offset: 1

Views

Author

Antti Karttunen, Jun 07 2022

Keywords

Comments

Because the ratio A003961(n) / A000203(n) is multiplicative, so is also its Dirichlet inverse (which also is a sequence of rational numbers). This sequence gives the numerators when presented in its lowest terms, while A354828 gives the denominators. See the examples.

Examples

			The ratio a(n)/A354828(n) for n = 1..21: 1, -1, -5/4, -2/7, -7/6, 5/4, -11/8, -8/35, -75/208, 7/6, -13/12, 5/14, -17/14, 11/8, 35/24, -1648/7595, -19/18, 75/208, -23/20, 1/3, 55/32.
		

Crossrefs

Cf. A354828 (denominators).
Cf. also A349627, A354365.

Programs

  • PARI
    up_to = 65537;
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA354827(n) = (A003961(n)/sigma(n));
    vDirInv = DirInverseCorrect(vector(up_to,n,AuxA354827(n)));
    A354827(n) = numerator(vDirInv[n]);
    A354828(n) = denominator(vDirInv[n]);

A349633 Numerators of the Möbius transform of ratio A003961(n)/n.

Original entry on oeis.org

1, 1, 2, 3, 2, 1, 4, 9, 10, 1, 2, 1, 4, 2, 4, 27, 2, 5, 4, 3, 8, 1, 6, 3, 14, 2, 50, 3, 2, 2, 6, 81, 4, 1, 8, 5, 4, 2, 8, 9, 2, 4, 4, 3, 4, 3, 6, 9, 44, 7, 4, 3, 6, 25, 4, 9, 8, 1, 2, 1, 6, 3, 40, 243, 8, 2, 4, 3, 4, 4, 2, 5, 6, 2, 28, 3, 8, 4, 4, 27, 250, 1, 6, 2, 4, 2, 4, 9, 8, 2, 16, 9, 4, 3, 8, 27, 4, 22, 20
Offset: 1

Views

Author

Antti Karttunen, Nov 28 2021

Keywords

Comments

Because the ratio A003961(n)/n is multiplicative, so is also its Möbius transform. This sequence gives the numerator of that ratio when presented in its lowest terms, while A349634 gives the denominators. See the examples.

Examples

			The ratio a(n)/A349634(n) for n = 1..15: 1/1, 1/2, 2/3, 3/4, 2/5, 1/3, 4/7, 9/8, 10/9, 1/5, 2/11, 1/2, 4/13, 2/7, 4/15.
		

Crossrefs

Cf. A000010, A003961, A003972, A008683, A349634 (denominators).
Cf. also A349627.

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p]^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; a[n_] := Numerator @ DivisorSum[n, MoebiusMu[n/#] * s[#]/# &]; Array[a, 100] (* Amiram Eldar, Nov 28 2021 *)
  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A349633(n) = numerator(sumdiv(n,d,moebius(n/d)*(A003961(d)/d)));

A378659 Positions of records for ratio A003961(n)/sigma(n), where A003961 is fully multiplicative with a(p) = nextprime(p) and sigma is the sum of the divisors function.

Original entry on oeis.org

1, 3, 4, 7, 8, 9, 16, 27, 32, 64, 128, 243, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864
Offset: 1

Views

Author

Antti Karttunen, Dec 06 2024

Keywords

Examples

			  Term k       A003961(k)/A000203(k)    ratio
       1                1/1          =  1
       3                5/4          =  1.25
       4                9/7          =  1.2857143
       7               11/8          =  1.375
       8               27/15         =  1.8
       9               25/13         =  1.9230769
      16               81/31         =  2.6129032
      27              125/40         =  3.125
      32              243/63         =  3.8571429
      64              729/127        =  5.7401575
     128             2187/255        =  8.5764706
     243             3125/364        =  8.5851648
     256             6561/511        =  12.839530
     ...
33554432     847288609443/67108863   =  12625.584
67108864    2541865828329/134217727  =  18938.376
		

Crossrefs

Cf. A001359 (apparently gives the positions of successive minima of the ratio, for n > 2).
Showing 1-6 of 6 results.