A349664 a(n) is the number of solutions for n^4 = z^2 - x^2 with {z,x} >= 1.
0, 1, 2, 3, 2, 7, 2, 5, 4, 7, 2, 17, 2, 7, 12, 7, 2, 13, 2, 17, 12, 7, 2, 27, 4, 7, 6, 17, 2, 37, 2, 9, 12, 7, 12, 31, 2, 7, 12, 27, 2, 37, 2, 17, 22, 7, 2, 37, 4, 13, 12, 17, 2, 19, 12, 27, 12, 7, 2, 87, 2, 7, 22, 11, 12, 37, 2, 17, 12, 37, 2, 49, 2, 7, 22
Offset: 1
Keywords
Examples
a(6) = 7 (solutions): 6^4 = 1296 = 325^2 - 323^2 = 164^2 - 160^2 = 111^2 - 105^2 = 85^2 - 77^2 = 60^2 - 48^2 = 45^2 - 27^2 = 39^2 - 15^2.
Links
- Karl-Heinz Hofmann, Table of n, a(n) for n = 1..10000
- Karl-Heinz Hofmann, What the terms can tell about n.
Crossrefs
Programs
-
Mathematica
a[n_] := Length[Solve[n^4 == z^2 - x^2 && x >= 1 && z >= 1, {x, z}, Integers]]; Array[a, 75] (* Amiram Eldar, Dec 14 2021 *)
-
PARI
a(n) = numdiv(if(n%2, n^4, n^4/4))\2; \\ Jinyuan Wang, Dec 19 2021
Comments