A349674 a(n) is the least v-palindrome in base n.
175, 1280, 6, 288, 10, 731, 14, 93, 18, 135, 22, 63, 26, 291, 109, 581, 34, 144, 38, 24, 51, 1145, 46, 273, 50, 260, 335, 63, 58, 360, 62, 141, 110, 513, 224, 1404, 74, 140, 294, 189, 82, 224, 86, 344, 105, 2410, 94, 417, 98, 176, 497, 56, 106, 76, 60, 189, 1385, 3952, 100
Offset: 2
Examples
a(10) = A338039(1) = 18.
Links
- Michel Marcus, Table of n, a(n) for n = 2..3000
- Daniel Tsai, A recurring pattern in natural numbers of a certain property, arXiv:2010.03151 [math.NT], 2020.
- Daniel Tsai, A recurring pattern in natural numbers of a certain property, Integers (2021) Vol. 21, Article #A32.
- Daniel Tsai, v-palindromes: an analogy to the palindromes, arXiv:2111.10211 [math.HO], 2021. See Table 1 p. 9.
Programs
-
Mathematica
s[1] = 0; s[n_] := Plus @@ First /@ (f = FactorInteger[n]) + Plus @@ Select[Last /@ f, # > 1 &]; a[b_] := Module[{k = b+1, r}, While[!(!Divisible[k, b] && k != (r = IntegerReverse[k,b]) && s[k] == s[IntegerReverse[k, b]]), k++]; k]; Array[a, 100, 2] (* Amiram Eldar, Nov 24 2021 *)
-
PARI
f(n) = my(f=factor(n)); vecsum(f[, 1]) + sum(k=1, #f~, if (f[k, 2]!=1, f[k, 2])); \\ A338038 isok(m, b) = my(r=fromdigits(Vecrev(digits(m, b)), b)); (m % b) && (m != r) && (f(r) == f(m)); a(n) = my(k=1); while (!isok(k, n), k++); k;
Comments