cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349703 Irregular triangle read by rows where T(n,k) is the number of free trees attaining the maximum terminal Wiener index (A349702) for a tree of n vertices among which k are leaves.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 4, 1, 2, 1, 1, 1, 5, 1, 2, 1, 1, 1, 1, 7, 1, 3, 1, 2, 1, 1, 1, 8, 1, 3, 1, 2, 1, 1, 1, 1, 10, 1, 4, 1, 3, 1, 2, 1, 1, 1, 12, 1, 4, 1, 3, 1, 2, 1, 1, 1, 1, 14, 1, 5, 1, 4, 1, 3, 1, 2, 1, 1, 1, 16, 1, 5, 1, 4, 1, 3, 1, 2, 1, 1, 1
Offset: 0

Views

Author

Kevin Ryde, Nov 26 2021

Keywords

Comments

Gutman, Furtula, and Petrović determine the maximum terminal Wiener index (A349702) possible in trees, and construct the trees which attain this maximum.
The triangle rows are all possible n,k combinations, which means k=n in rows n=0..2, and k=2..n-1 in rows n>=3.
For k even, a unique tree has the maximum index.
For k=3, all trees have the same index.

Examples

			Triangle begins
      k=0  1  2  3  4  5  6  7  8
  n=0;  1,
  n=1;     1,
  n=2;        1,
  n=3;        1,
  n=4;        1, 1,
  n=5;        1, 1, 1,
  n=6;        1, 2, 1, 1,
  n=7;        1, 3, 1, 1, 1,
  n=8;        1, 4, 1, 2, 1, 1,
  n=9;        1, 5, 1, 2, 1, 1, 1,
For n=9,k=5, the T(9,5) = 2 trees are
  *--*--*--*--*--*     *--*--*--*--*--*
    /|         \         /   |      \
   * *          *       *    *       *
		

Crossrefs

Cf. A349702 (maximum index), A055290 (count all trees), A001399 (trees k=3 leaves).

Programs

  • PARI
    T(n,k) = if(n==1||k%2==0,1, k==3,(n-1)^2\/12, (n-k+1)>>1);

Formula

T(n,3) = A055290(n,3) = A001399(n-4) = round((n-1)^2 / 12).
T(n,k) = 1 for k even. [Gutman, Furtula, Petrović, theorem 4 (a)]
T(n,k) = ceiling((n-k)/2) for odd k >= 5. [Gutman, Furtula, Petrović, theorem 4 (b)]
G.f.: 1 + x*y + ( x^2*y^2 + ( x^4*y^3/(1-x^3) + x^5*y^4*(1+x*y-x^2)/(1-x^2*y^2) )/(1-x^2) )/(1-x).