A349703 Irregular triangle read by rows where T(n,k) is the number of free trees attaining the maximum terminal Wiener index (A349702) for a tree of n vertices among which k are leaves.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 4, 1, 2, 1, 1, 1, 5, 1, 2, 1, 1, 1, 1, 7, 1, 3, 1, 2, 1, 1, 1, 8, 1, 3, 1, 2, 1, 1, 1, 1, 10, 1, 4, 1, 3, 1, 2, 1, 1, 1, 12, 1, 4, 1, 3, 1, 2, 1, 1, 1, 1, 14, 1, 5, 1, 4, 1, 3, 1, 2, 1, 1, 1, 16, 1, 5, 1, 4, 1, 3, 1, 2, 1, 1, 1
Offset: 0
Examples
Triangle begins k=0 1 2 3 4 5 6 7 8 n=0; 1, n=1; 1, n=2; 1, n=3; 1, n=4; 1, 1, n=5; 1, 1, 1, n=6; 1, 2, 1, 1, n=7; 1, 3, 1, 1, 1, n=8; 1, 4, 1, 2, 1, 1, n=9; 1, 5, 1, 2, 1, 1, 1, For n=9,k=5, the T(9,5) = 2 trees are *--*--*--*--*--* *--*--*--*--*--* /| \ / | \ * * * * * *
Links
- Kevin Ryde, Table of n, a(n) for n = 0..9593 (rows 0..140)
- Ivan Gutman, Boris Furtula and Miroslav Petrović, Terminal Wiener Index, Journal of Mathematical Chemistry, volume 46, 2009, pages 522-531.
Programs
-
PARI
T(n,k) = if(n==1||k%2==0,1, k==3,(n-1)^2\/12, (n-k+1)>>1);
Formula
T(n,k) = 1 for k even. [Gutman, Furtula, Petrović, theorem 4 (a)]
T(n,k) = ceiling((n-k)/2) for odd k >= 5. [Gutman, Furtula, Petrović, theorem 4 (b)]
G.f.: 1 + x*y + ( x^2*y^2 + ( x^4*y^3/(1-x^3) + x^5*y^4*(1+x*y-x^2)/(1-x^2*y^2) )/(1-x^2) )/(1-x).
Comments