A349724 Numbers k >= 1 such that A000217(k) divided by A018804(k) is an integer.
1, 2, 24, 25, 77, 153, 729, 1183, 1875, 6174, 7502, 14819, 15066, 18225, 19683, 21384, 26411, 26624, 28160, 37179, 146334, 155000, 157464, 194579, 236313, 336091, 399854, 418950, 632709, 701519, 818741, 1572864, 1605632, 2001824, 2067624, 2142075, 3670016, 3746287
Offset: 1
Keywords
Examples
k = 24: A000217(24) = 300, A018804(24) = 100, 300/100 = 3 thus 24 is a term.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..92
Programs
-
Mathematica
A018804[n_]:=Apply[Times,Apply[((#1-1)#2/#1+1)#1^#2&,FactorInteger[n],{1}]]; (* After Amiram Eldar in A018804 *) upto=10^5;Reap[Do[If[Divisible[k(k+1)/2,A018804[k]],Sow[k]],{k,upto}]][[-1,-1]] (* Paolo Xausa, Aug 19 2022 *)
-
PARI
isok(k) = !(k*(k+1)/2 % sumdiv(k, d, k*eulerphi(d)/d)); \\ Michel Marcus, Nov 27 2021
-
Python
from itertools import islice, count from sympy import factorint from math import prod def A349724(): # generator of terms for k in count(1): if not k*(k+1)//2 % prod(p**(e-1)*((p-1)*e+p) for p, e in factorint(k).items()): yield k A349724_list = list(islice(A349724(),20)) # Chai Wah Wu, Nov 29 2021
Extensions
a(12)-a(20) from Paolo Xausa, Nov 27 2021
More terms from Amiram Eldar, Nov 27 2021