cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349724 Numbers k >= 1 such that A000217(k) divided by A018804(k) is an integer.

Original entry on oeis.org

1, 2, 24, 25, 77, 153, 729, 1183, 1875, 6174, 7502, 14819, 15066, 18225, 19683, 21384, 26411, 26624, 28160, 37179, 146334, 155000, 157464, 194579, 236313, 336091, 399854, 418950, 632709, 701519, 818741, 1572864, 1605632, 2001824, 2067624, 2142075, 3670016, 3746287
Offset: 1

Views

Author

Ctibor O. Zizka, Nov 27 2021

Keywords

Examples

			k = 24: A000217(24) = 300, A018804(24) = 100, 300/100 = 3 thus 24 is a term.
		

Crossrefs

Programs

  • Mathematica
    A018804[n_]:=Apply[Times,Apply[((#1-1)#2/#1+1)#1^#2&,FactorInteger[n],{1}]]; (* After Amiram Eldar in A018804 *)
    upto=10^5;Reap[Do[If[Divisible[k(k+1)/2,A018804[k]],Sow[k]],{k,upto}]][[-1,-1]] (* Paolo Xausa, Aug 19 2022 *)
  • PARI
    isok(k) = !(k*(k+1)/2 % sumdiv(k, d, k*eulerphi(d)/d)); \\ Michel Marcus, Nov 27 2021
    
  • Python
    from itertools import islice, count
    from sympy import factorint
    from math import prod
    def A349724(): # generator of terms
        for k in count(1):
            if not k*(k+1)//2 % prod(p**(e-1)*((p-1)*e+p) for p, e in factorint(k).items()):
                yield k
    A349724_list = list(islice(A349724(),20)) # Chai Wah Wu, Nov 29 2021

Extensions

a(12)-a(20) from Paolo Xausa, Nov 27 2021
More terms from Amiram Eldar, Nov 27 2021