A349725 Numbers k >= 1 such that A018804(k) divided by A000010(k) is an integer.
1, 2, 4, 8, 12, 16, 20, 32, 36, 48, 64, 100, 108, 112, 128, 132, 144, 192, 256, 320, 324, 432, 500, 512, 576, 756, 768, 784, 960, 972, 1024, 1296, 1452, 1600, 1728, 1892, 2048, 2052, 2112, 2240, 2304, 2500, 2816, 2880, 2916, 3072, 3888, 4096, 4800, 5120, 5184, 5292, 5488
Offset: 1
Keywords
Examples
A018804(20) = 72, A000010(20) = 8, 72/8 = 9 thus 20 is a term.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
A018804[n_]:=Apply[Times,Apply[((#1-1)#2/#1+1)#1^#2&,FactorInteger[n],{1}]]; (* After Amiram Eldar in A018804 *) upto=10^5;Join[{1,2},Reap[Do[If[Divisible[A018804[k],EulerPhi[k]],Sow[k]],{k,4,upto,4}]][[-1,-1]]] (* Paolo Xausa, Jul 25 2022 *)
-
PARI
isok(k) = !(sumdiv(k, d, k*eulerphi(d)/d) % eulerphi(k)); \\ Michel Marcus, Nov 27 2021
Formula
For n >= 3, a(n) mod 4 = 0. - Paolo Xausa, Jul 25 2022