A349748 Primes p for which 2^p-1 and 5^p-1 are not relatively prime.
2, 179, 239, 359, 419, 431, 499, 547, 571, 641, 659, 719, 761, 937, 1013, 1019, 1223, 1439, 1499, 1559, 1789, 2039, 2339, 2399, 2459, 2539, 2593, 2677, 2699, 2819, 2939, 3299, 3359, 3539, 3779, 4013, 4019, 4273, 4513, 4787, 4919, 5039, 5279, 5393, 5399, 5639, 6173, 6199, 6899, 7079, 8599, 8741, 8929, 9059, 9419, 9479
Offset: 1
Keywords
Examples
2 is included as 2^2 - 1 = 3 and 5^2 - 1 = 24 share a prime factor 3.
Programs
-
Mathematica
upto=10^4;Select[Prime[Range[PrimePi[upto]]],GCD[2^#-1,5^#-1]>1&] (* Paolo Xausa, Nov 30 2021 *)
-
PARI
isA349748(n) = (isprime(n)&&(gcd(2^n-1,5^n-1)>1));
-
Python
from math import gcd from sympy import isprime def ok(n): return isprime(n) and gcd(2**n-1, 5**n-1) > 1 print([k for k in range(9500) if ok(k)]) # Michael S. Branicky, Nov 30 2021
Comments