A349756 Numbers k such that the odd part of sigma(k) is equal to gcd(sigma(k), A003961(k)), where A003961 is fully multiplicative with a(p) = nextprime(p), and sigma is the sum of divisors function.
1, 2, 3, 6, 7, 14, 20, 21, 24, 27, 31, 42, 54, 57, 60, 62, 93, 114, 120, 127, 140, 160, 168, 186, 189, 216, 217, 220, 237, 254, 264, 301, 378, 381, 399, 408, 420, 434, 460, 474, 480, 513, 540, 552, 602, 620, 651, 660, 744, 762, 792, 798, 837, 840, 889, 903, 940, 1026, 1080, 1120, 1128, 1140, 1302, 1320, 1380, 1392, 1512
Offset: 1
Keywords
Links
Crossrefs
Programs
-
Mathematica
f[p_, e_] := NextPrime[p]^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; oddpart[n_] := n/2^IntegerExponent[n, 2]; q[n_] := oddpart[(sigma = DivisorSigma[1, n])] == GCD[sigma, s[n]]; Select[Range[1500], q] (* Amiram Eldar, Dec 04 2021 *)
-
PARI
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; A355946(n) = { my(s=sigma(n)); !(A003961(n)%((s>>=valuation(s,2)))); }; isA349756(n) = A355946(n);
Comments