A349760 Numbers k such that d(k) = A000005(k), sigma(k) = A000203(k) and phi(k) = A000010(k) are all abundant numbers (A005101).
84, 90, 108, 126, 132, 140, 150, 156, 180, 198, 220, 224, 228, 234, 252, 260, 276, 294, 300, 306, 308, 315, 336, 342, 348, 350, 352, 360, 364, 372, 380, 396, 414, 416, 420, 432, 444, 460, 476, 486, 490, 492, 495, 500, 504, 516, 522, 525, 528, 532, 540, 550, 558
Offset: 1
Keywords
Examples
84 is a term since d(84) = 12, sigma(84) = 224 and phi(84) = 24 are all abundant numbers: sigma(12) = 28 > 2*12 = 24, sigma(224) = 504 > 2*224 = 448 and sigma(24) = 60 > 2*24 = 48.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- József Sándor, Selected Chapters of Geometry, Analysis and Number Theory, 2005, pp. 132-134.
Programs
-
Mathematica
abQ[n_] := DivisorSigma[1, n] > 2*n; q[n_] := And @@ abQ /@ Join[DivisorSigma[{0, 1}, n], {EulerPhi[n]}]; Select[Range[500], q]
-
PARI
isab(k) = sigma(k) > 2*k; \\ A005101 isok(k) = my(f=factor(k)); isab(numdiv(f)) && isab(sigma(f)) && isab(eulerphi(f)); \\ Michel Marcus, Dec 03 2021
Comments