A349763 Numbers k such that d(k) = A000005(k), sigma(k) = A000203(k) and phi(k) = A000010(k) are all deficient numbers (A005100).
1, 2, 3, 4, 8, 16, 48, 64, 121, 128, 192, 256, 512, 529, 1024, 2116, 2209, 2809, 3072, 3481, 4096, 6889, 8192, 8836, 11449, 12288, 13924, 14641, 16384, 17161, 18769, 22201, 27556, 27889, 29282, 29929, 32041, 32768, 36481, 45796, 51529, 54289, 57121, 63001, 65536
Offset: 1
Keywords
Examples
2 is a term since d(2) = 2, sigma(2) = 3 and phi(2) = 1 are all deficient numbers.
References
- R. Bojanić, Asymptotic evaluations of the sum of divisors of certain numbers (in Serbo-Croatian), Bull. Soc. Math.-Phys. R. P. Macédoine, Vol. 5 (1954), pp. 5-15.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- József Sándor, Selected Chapters of Geometry, Analysis and Number Theory, 2005, pp. 132-134.
Programs
-
Mathematica
defQ[n_] := DivisorSigma[1, n] < 2*n; q[n_] := And @@ defQ /@ Join[DivisorSigma[{0, 1}, n], {EulerPhi[n]}]; Select[Range[10^5], q]
-
PARI
isdef(k) = sigma(k) < 2*k; isok(k) = my(f=factor(k)); isdef(numdiv(f)) && isdef(sigma(f)) && isdef(eulerphi(k)); \\ Michel Marcus, Dec 01 2021
Comments