A349788 Number of permutations of [n] having exactly one increasing cycle.
0, 1, 1, 1, 5, 36, 234, 1597, 12459, 111451, 1116277, 12298958, 147655760, 1919465237, 26870436345, 403044639709, 6448695657957, 109628096021612, 1973308547820586, 37492874766408001, 749857477972731979, 15747006284752049759, 346434131946498886045
Offset: 0
Keywords
Examples
a(4) = 5: (1)(243), (143)(2), (142)(3), (132)(4), (1234).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..450
- Wikipedia, Permutation
Programs
-
Maple
b:= proc(n) option remember; series(`if`(n=0, 1, add((x+ (j-1)!-1)*binomial(n-1, j-1)*b(n-j), j=1..n)), x, 2) end: a:= n-> coeff(b(n), x, 1): seq(a(n), n=0..23);
-
Mathematica
b[n_] := b[n] = Series[If[n == 0, 1, Sum[(x+ (j-1)!-1)*Binomial[n-1, j-1]*b[n-j], {j, 1, n}]], {x, 0, 2}]; a[n_] := Coefficient[b[n], x, 1]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Apr 15 2022, after Alois P. Heinz *)
Comments