cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349788 Number of permutations of [n] having exactly one increasing cycle.

Original entry on oeis.org

0, 1, 1, 1, 5, 36, 234, 1597, 12459, 111451, 1116277, 12298958, 147655760, 1919465237, 26870436345, 403044639709, 6448695657957, 109628096021612, 1973308547820586, 37492874766408001, 749857477972731979, 15747006284752049759, 346434131946498886045
Offset: 0

Views

Author

Alois P. Heinz, Nov 30 2021

Keywords

Comments

Cycle (b(1), b(2), ...) is said to be increasing if, when written with its smallest element in the first position, it satisfies b(1) < b(2) < ... .
Exponential convolution of A000587 with A002627.

Examples

			a(4) = 5: (1)(243), (143)(2), (142)(3), (132)(4), (1234).
		

Crossrefs

Column k=1 of A186754.

Programs

  • Maple
    b:= proc(n) option remember; series(`if`(n=0, 1, add((x+
         (j-1)!-1)*binomial(n-1, j-1)*b(n-j), j=1..n)), x, 2)
        end:
    a:= n-> coeff(b(n), x, 1):
    seq(a(n), n=0..23);
  • Mathematica
    b[n_] := b[n] = Series[If[n == 0, 1, Sum[(x+
         (j-1)!-1)*Binomial[n-1, j-1]*b[n-j], {j, 1, n}]], {x, 0, 2}];
    a[n_] := Coefficient[b[n], x, 1];
    Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Apr 15 2022, after Alois P. Heinz *)

Formula

E.g.f.: exp(1-exp(x))*(exp(x)-1)/(1-x).
a(n) = A186758(n) - A186755(n).
a(n) = Sum_{j=0..n} binomial(n,j)*A000587(j)*A002627(n-j).
a(n) mod 2 = A131719(n).
a(n) ~ (exp(1) - 1) * exp(1 - exp(1)) * n!. - Vaclav Kotesovec, Dec 05 2021