A349798 Number of weakly alternating ordered prime factorizations of n with at least two adjacent equal parts.
0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 1, 0, 2, 0, 2, 0, 0, 0, 4, 1, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 2, 2, 0, 0, 5, 1, 2, 0, 2, 0, 4, 0, 4, 0, 0, 0, 2, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 0, 5, 0, 0, 2, 2, 0, 0, 0, 5, 1, 0, 0, 2, 0, 0, 0
Offset: 1
Keywords
Examples
Using prime indices instead of factors, the a(n) ordered prime factorizations for selected n are: n = 4 12 24 48 90 120 192 240 270 ------------------------------------------------------------------ 11 112 1112 11112 1223 11132 1111112 111132 12232 211 1121 11121 1322 11213 1111121 111213 13222 1211 11211 2213 11312 1111211 111312 21223 2111 12111 2231 21113 1112111 112131 21322 21111 3122 21311 1121111 113121 22132 3221 23111 1211111 121113 22213 31112 2111111 121311 22231 31211 131112 22312 131211 23122 211131 23221 213111 31222 231111 32212 311121 312111
Links
- Wikipedia, Alternating permutation
Crossrefs
This is the weakly but not strictly alternating case of A008480.
Including alternating (in fact, anti-run) permutations gives A349056.
A335452 = anti-run ordered prime factorizations.
A344652 = ordered prime factorizations w/o weakly increasing triples.
A349797 = non-weakly alternating ordered prime factorizations.
Comments