A349808 Number of cells in a regular 7-gon after n generations of mitosis.
1, 50, 190, 400, 680, 1030, 1450, 1940, 2500, 3130, 3830, 4600, 5440, 6350, 7330, 8380, 9500, 10690, 11950, 13280, 14680, 16150, 17690, 19300, 20980, 22730, 24550, 26440, 28400, 30430, 32530, 34700, 36940, 39250, 41630, 44080, 46600, 49190, 51850, 54580, 57380, 60250, 63190, 66200, 69280, 72430, 75650, 78940, 82300, 85730, 89230, 92800
Offset: 0
Keywords
Links
- Scott R. Shannon, Illustration for a(1) = 50, the 7-gon after the first splitting.
- Scott R. Shannon, Illustration for a(2) = 190, the 7-gon after the second splitting.
- Scott R. Shannon, Illustration for a(3) = 400 (third generation).
- Scott R. Shannon, Illustration for a(4) = 680 (fourth generation).
- Scott R. Shannon, Illustration for a(5) = 1030 (fifth generation).
- Index entries for linear recurrences with constant coefficients, signature (3, -3, 1).
Crossrefs
Row 7 of the array in A350000.
Programs
-
Maple
with(LinearAlgebra): M:=Matrix(5,5,[ [1,4,10,18,35], [0,0,0,6,7], [0,0,1,0,7], [0,0,0,0,0], [0,0,0,0,1]]); v:=Matrix(5,1,[ [0], [0], [0], [0], [1]]); u:=Matrix(1,5,[1,1,1,1,1]); A349808:=n->(u.M^n.v)[1,1];
Formula
a(0)=1; for n>=1, a(n) = 35*k^2+35*k-20.
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n >= 4, with a(0) = 1, a(1) = 50, a(2) = 190, a(3) = 400.
G.f.: (21*x^3-43*x^2-47*x-1)/(x-1)^3.
This sequence is most easily analyzed via the transition matrix M described in the Maple program.
Comments