cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349813 Triangle read by rows: row 1 is [3]; for n >= 1, row n gives coefficients of expansion of (-3 - x + x^2 + 3*x^3)*(1 + x + x^2 + x^3)^(n-1) in order of increasing powers of x.

Original entry on oeis.org

3, -3, -1, 1, 3, -3, -4, -3, 0, 3, 4, 3, -3, -7, -10, -10, -4, 4, 10, 10, 7, 3, -3, -10, -20, -30, -31, -20, 0, 20, 31, 30, 20, 10, 3, -3, -13, -33, -63, -91, -101, -81, -31, 31, 81, 101, 91, 63, 33, 13, 3, -3, -16, -49, -112, -200, -288, -336, -304, -182, 0, 182, 304, 336, 288, 200, 112, 49, 16, 3
Offset: 0

Views

Author

N. J. A. Sloane, Dec 23 2021

Keywords

Comments

The row polynomials can be further factorized, since -3 - x + x^2 + 3*x^3 = -(1-x)*(3 + 4*x + 3*x^2) and 1 + x + x^2 + x^3 = (1+x)*(1+x^2).
The rule for constructing this triangle (ignoring row 0) is the same as that for A008287: each number is the sum of the four numbers immediately above it in the previous row. Here row 1 is [-3, -1, 1, 3] instead of [1, 1, 1, 1].

Examples

			Triangle begins:
   3;
  -3,  -1,   1,   3;
  -3,  -4,  -3,   0,   3,    4,   3;
  -3,  -7, -10, -10,  -4,    4,  10,  10,  7,  3;
  -3, -10, -20, -30, -31,  -20,   0,  20, 31, 30,  20, 10,  3;
  -3, -13, -33, -63, -91, -101, -81, -31, 31, 81, 101, 91, 63, 33, 13, 3;
  ...
		

Crossrefs

The right half of the triangle gives A349814.

Programs

  • Maple
    t1:=-3-x+x^2+3*x^3;
    m:=1+x+x^2+x^3;
    lprint([3]);
    for n from 1 to 12 do
    w1:=expand(t1*m^(n-1));
    w4:=series(w1,x,3*n+1);
    w5:=seriestolist(w4);
    lprint(w5);
    od: