A349835 Expansion of (1 + 4*x)/sqrt(1 - 4*x).
1, 6, 14, 44, 150, 532, 1932, 7128, 26598, 100100, 379236, 1444456, 5525884, 21217224, 81719000, 315583920, 1221550470, 4737927780, 18409560180, 71645805000, 279227584020, 1089643989720, 4257130461480, 16649826582480, 65181326593500, 255401021170152
Offset: 0
Examples
a(1) = binomial(0,0) * (8 - 2/1) = 6; a(2) = binomial(2,1) * (8 - 2/2) = 14; a(3) = binomial(4,2) * (8 - 2/3) = 44; a(4) = binomial(6,3) * (8 - 2/4) = 150.
Links
- Wikipedia, Cauchy product
Programs
-
PARI
a(n) = if(n, binomial(2*(n-1),n-1) * (8 - 2/n), 1)
Formula
For n > 0, a(n) = binomial(2*n,n) + 4*binomial(2*(n-1),n-1) = binomial(2*(n-1),n-1) * (8 - 2/n).
a(n) ~ 4^n * (2/sqrt(Pi*n)).
Comments