A349846
Expansion of -(1 - 8*x) / sqrt(1 - 4*x).
Original entry on oeis.org
-1, 6, 10, 28, 90, 308, 1092, 3960, 14586, 54340, 204204, 772616, 2939300, 11232648, 43088200, 165815280, 639859770, 2475036900, 9593714460, 37255818600, 144915581580, 564514356120, 2201964031800, 8599360982160, 33619842137700, 131570223027048, 515366318553912
Offset: 0
a(1) = binomial(0,0) * (4 + 2/1) = 6;
a(2) = binomial(2,1) * (4 + 2/2) = 10;
a(3) = binomial(4,2) * (4 + 2/3) = 28;
a(4) = binomial(6,3) * (4 + 2/4) = 90.
A349847
Expansion of (1 + 8*x) / sqrt(1 - 4*x).
Original entry on oeis.org
1, 10, 22, 68, 230, 812, 2940, 10824, 40326, 151580, 573716, 2183480, 8347612, 32033848, 123321400, 476050320, 1842020550, 7142249340, 27743985060, 107946346200, 420608639220, 1641030105000, 6410161959240, 25066222437360, 98115049503900, 384391435902552
Offset: 0
a(1) = binomial(0,0) * (12 - 2/1) = 10;
a(2) = binomial(2,1) * (12 - 2/2) = 22;
a(3) = binomial(4,2) * (12 - 2/3) = 68;
a(4) = binomial(6,3) * (12 - 2/4) = 230.
-
CoefficientList[Series[(1+8x)/Sqrt[1-4x],{x,0,30}],x] (* Harvey P. Dale, Jun 08 2023 *)
-
a(n) = if(n, binomial(2*(n-1),n-1) * (12 - 2/n), 1)
A349834
Expansion of sqrt(1 + 4*x)/(1 - 4*x).
Original entry on oeis.org
1, 6, 22, 92, 358, 1460, 5756, 23288, 92294, 372036, 1478420, 5947272, 23671516, 95102088, 378922552, 1521039088, 6064766662, 24329781988, 97059838372, 389194630888, 1553243997172, 6226104229528, 24855484384072, 99604902663568, 397733491426972
Offset: 0
Let C(n) denote the Catalan numbers.
a(0) = 2^0 = 1;
a(1) = 2^2 + 2^1 * C(0) = 6;
a(2) = 2^4 + 2^3 * C(0) - 2^1 * C(1) = 22;
a(3) = 2^6 + 2^5 * C(0) - 2^3 * C(1) + 2^1 * C(2) = 92;
a(4) = 2^8 + 2^7 * C(0) - 2^5 * C(1) + 2^3 * C(2) - 2^1 * C(3) = 358.
Showing 1-3 of 3 results.
Comments