cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A349835 Expansion of (1 + 4*x)/sqrt(1 - 4*x).

Original entry on oeis.org

1, 6, 14, 44, 150, 532, 1932, 7128, 26598, 100100, 379236, 1444456, 5525884, 21217224, 81719000, 315583920, 1221550470, 4737927780, 18409560180, 71645805000, 279227584020, 1089643989720, 4257130461480, 16649826582480, 65181326593500, 255401021170152
Offset: 0

Views

Author

Jianing Song, Dec 01 2021

Keywords

Comments

Let b(n) = A349834(n)/4^n, {b(n)} = {1, 3/2, 11/8, 23/16, 179/128, 365/256, 1439/1024, ...}. Since A349834(n) >= 4^n, Sum_{n>=0} b(n) is divergent. Let c(n) = a(n)/(-4)^n, {c(n)} = {1, -3/2, 7/8, -11/16, 75/128, -133/256, 483/1024, ...}. Since |c(n)| ~ 2/sqrt(Pi*n) and |c(n+1)|/|c(n)| = ((4*n+3)*(2*n-1)) / ((4*n-1)*(2*n+2)) < 1, Sum_{n>=0} c(n) is conditionally convergent by Leibniz's criterion. Note that Sum_{n>=0} b(n)*x^n = sqrt(1 + x)/(1 - x), Sum_{n>=0} c(n)*x^n = (1 - x)/sqrt(1 + x), hence the Cauchy product of Sum_{n>=0} b(n) and Sum_{n>=0} c(n) is 1 + 0 + 0 + .... {b(n)} and {c(n)} serve as an example such that the Cauchy product of a divergent series and a conditionally convergent series can be absolutely convergent.

Examples

			a(1) = binomial(0,0) * (8 - 2/1) = 6;
a(2) = binomial(2,1) * (8 - 2/2) = 14;
a(3) = binomial(4,2) * (8 - 2/3) = 44;
a(4) = binomial(6,3) * (8 - 2/4) = 150.
		

Crossrefs

Programs

  • PARI
    a(n) = if(n, binomial(2*(n-1),n-1) * (8 - 2/n), 1)

Formula

For n > 0, a(n) = binomial(2*n,n) + 4*binomial(2*(n-1),n-1) = binomial(2*(n-1),n-1) * (8 - 2/n).
a(n) ~ 4^n * (2/sqrt(Pi*n)).

A349846 Expansion of -(1 - 8*x) / sqrt(1 - 4*x).

Original entry on oeis.org

-1, 6, 10, 28, 90, 308, 1092, 3960, 14586, 54340, 204204, 772616, 2939300, 11232648, 43088200, 165815280, 639859770, 2475036900, 9593714460, 37255818600, 144915581580, 564514356120, 2201964031800, 8599360982160, 33619842137700, 131570223027048, 515366318553912
Offset: 0

Views

Author

Jianing Song, Dec 01 2021

Keywords

Comments

Sum_{n>=0} (-a(n)/(-4)^n) is the Cauchy product of Sum_{n>=0} (-A349844(n)/(-8)^n) with itself.

Examples

			a(1) = binomial(0,0) * (4 + 2/1) = 6;
a(2) = binomial(2,1) * (4 + 2/2) = 10;
a(3) = binomial(4,2) * (4 + 2/3) = 28;
a(4) = binomial(6,3) * (4 + 2/4) = 90.
		

Crossrefs

Programs

  • PARI
    a(n) = if(n, binomial(2*(n-1),n-1) * (4 + 2/n), -1)

Formula

For n > 0, a(n) = 8*binomial(2*(n-1),n-1) - binomial(2*n,n) = binomial(2*(n-1),n-1) * (4 + 2/n).
a(n) ~ 4^n * (1/sqrt(Pi*n)).

A349845 Expansion of -(1 - 16*x)^(1/2) / (1 + 8*x)^(1/4).

Original entry on oeis.org

-1, 10, 6, 332, 1498, 29964, 269660, 4066456, 48190842, 679524828, 8993585460, 126419889960, 1757062172580, 25004701186680, 356647387079160, 5145713721249072, 74607994412294970, 1089344167433473788, 15981504546211353156, 235635552851036269704
Offset: 0

Views

Author

Jianing Song, Dec 01 2021

Keywords

Comments

Let b(n) = -a(n)/8^n, {b(n)} = {1, -5/4, -3/32, -83/128, -749/2048, -7491/8192, -67415/65536, ...}, then Sum_{n>=0} b(n) is clearly divergent since Sum_{n>=0} a(n)*x^n has radius of convergence 1/16. Let c(n) = A349847(n)/(-4)^n, {c(n)} = {1, -5/2, 11/8, -17/16, 115/128, -203/256, 735/1024, ...}, then Sum_{n>=0} c(n) is the Cauchy product of Sum_{n>=1} b(n) with itself. Since |c(n)| ~ 3/sqrt(Pi*n) and |c(n+1)|/|c(n)| = ((6*n+5)*(2*n-1)) / ((6*n-1)*(2*n+2)) < 1, Sum_{n>=0} c(n) is conditionally convergent by Leibniz's criterion. {b(n)} serves as an example such that the Cauchy product of a divergent series with itself can be conditionally convergent.

Examples

			Let C(n) denote the Catalan numbers, P = A004981.
a(0) = -P(0) = -1;
a(1) = 2^3 * C(0) * P(0) + P(1) = 10;
a(2) = -2^3 * C(0) * P(1) + 2^5 * C(1) * P(0) - P(2) = 6;
a(3) = 2^3 * C(0) * P(2) - 2^5 * C(1) * P(1) + 2^7 * C(2) * P(0) + P(3) = 332;
a(4) = -2^3 * C(0) * P(3) + 2^5 * C(1) * P(2) - 2^7 * C(2) * P(1) + 2^9 * C(3) * P(0) - P(4) = 1498.
		

Crossrefs

Programs

  • PARI
    C(n) = binomial(2*n,n)/(n+1)
    a(n) = sum(k=0, n-1, (-1)^(n-1-k) * 2^(2*k+3) * C(k) * A004981(n-1-k)) + (-1)^(n-1) * A004981(n) \\ See A004981 for its program

Formula

a(n) = (Sum_{k=0..n-1} (-1)^(n-1-k) * 2^(2*k+3) * CatalanNumber(k) * A004981(n-1-k)) + (-1)^(n-1) * A004981(n).
Showing 1-3 of 3 results.