A349835
Expansion of (1 + 4*x)/sqrt(1 - 4*x).
Original entry on oeis.org
1, 6, 14, 44, 150, 532, 1932, 7128, 26598, 100100, 379236, 1444456, 5525884, 21217224, 81719000, 315583920, 1221550470, 4737927780, 18409560180, 71645805000, 279227584020, 1089643989720, 4257130461480, 16649826582480, 65181326593500, 255401021170152
Offset: 0
a(1) = binomial(0,0) * (8 - 2/1) = 6;
a(2) = binomial(2,1) * (8 - 2/2) = 14;
a(3) = binomial(4,2) * (8 - 2/3) = 44;
a(4) = binomial(6,3) * (8 - 2/4) = 150.
A349847
Expansion of (1 + 8*x) / sqrt(1 - 4*x).
Original entry on oeis.org
1, 10, 22, 68, 230, 812, 2940, 10824, 40326, 151580, 573716, 2183480, 8347612, 32033848, 123321400, 476050320, 1842020550, 7142249340, 27743985060, 107946346200, 420608639220, 1641030105000, 6410161959240, 25066222437360, 98115049503900, 384391435902552
Offset: 0
a(1) = binomial(0,0) * (12 - 2/1) = 10;
a(2) = binomial(2,1) * (12 - 2/2) = 22;
a(3) = binomial(4,2) * (12 - 2/3) = 68;
a(4) = binomial(6,3) * (12 - 2/4) = 230.
-
CoefficientList[Series[(1+8x)/Sqrt[1-4x],{x,0,30}],x] (* Harvey P. Dale, Jun 08 2023 *)
-
a(n) = if(n, binomial(2*(n-1),n-1) * (12 - 2/n), 1)
A349844
Expansion of -(1 - 16*x)^(1/2) / (1 - 8*x)^(1/4).
Original entry on oeis.org
-1, 6, 38, 340, 3482, 38740, 457500, 5654440, 72412410, 953696900, 12844323828, 176130113432, 2450987760676, 34524885571400, 491309242342264, 7052495781361488, 101992452504973882, 1484590294804096356, 21732695236734410500, 319745609409940857144
Offset: 0
Let C(n) denote the Catalan numbers, P = A004981.
a(0) = -P(0) = -1;
a(1) = 2^3 * C(0) * P(0) - P(1) = 6;
a(2) = 2^3 * C(0) * P(1) + 2^5 * C(1) * P(0) - P(2) = 38;
a(3) = 2^3 * C(0) * P(2) + 2^5 * C(1) * P(1) + 2^7 * C(2) * P(0) - P(3) = 340;
a(4) = 2^3 * C(0) * P(3) + 2^5 * C(1) * P(2) + 2^7 * C(2) * P(1) + 2^9 * C(3) * P(0) - P(4) = 3482.
-
C(n) = binomial(2*n,n)/(n+1)
a(n) = sum(k=0, n-1, 2^(2*k+3) * C(k) * A004981(n-1-k)) - A004981(n) \\ See A004981 for its program
Showing 1-3 of 3 results.
Comments